Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Author: Hajime Urakawa

Publisher: World Scientific

Published: 2017-06-02

Total Pages: 310

ISBN-13: 9813109106

DOWNLOAD EBOOK

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold

Author: Steven Rosenberg

Publisher: Cambridge University Press

Published: 1997-01-09

Total Pages: 190

ISBN-13: 9780521468312

DOWNLOAD EBOOK

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry

Author: M.-E. Craioveanu

Publisher: Springer Science & Business Media

Published: 2001-10-31

Total Pages: 330

ISBN-13: 9781402000522

DOWNLOAD EBOOK

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.


Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces

Author: Peter Buser

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 473

ISBN-13: 0817649921

DOWNLOAD EBOOK

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.


Selected Papers

Selected Papers

Author: Shiing-Shen Chern

Publisher: Springer Science & Business Media

Published: 1978

Total Pages: 486

ISBN-13: 9780387968162

DOWNLOAD EBOOK

In recognition of professor Shiing-Shen Chern’s long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern’s total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This second volume comprises selected papers written between 1932 and 1965.


Mathematician And His Mathematical Work, A: Selected Papers Of S S Chern

Mathematician And His Mathematical Work, A: Selected Papers Of S S Chern

Author: Shiu-yuen Cheng

Publisher: World Scientific

Published: 1996-09-07

Total Pages: 732

ISBN-13: 9814499978

DOWNLOAD EBOOK

This volume is about the life and work of Shiing-Shen Chern (1911-), one of the leading mathematicians of this century. The book contains personal accounts by some friends, together with a summary of the mathematical works by Chern himself. Besides a selection of the mathematical papers the book also contains all his papers published after 1988.


Spectral Graph Theory

Spectral Graph Theory

Author: Fan R. K. Chung

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 228

ISBN-13: 0821803158

DOWNLOAD EBOOK

This text discusses spectral graph theory.


Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry

Author: M.-E. Craioveanu

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 447

ISBN-13: 940172475X

DOWNLOAD EBOOK

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.


Topics in Modern Differential Geometry

Topics in Modern Differential Geometry

Author: Stefan Haesen

Publisher: Springer

Published: 2016-12-21

Total Pages: 289

ISBN-13: 9462392404

DOWNLOAD EBOOK

A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.