Spectrum Analysis Explained

Spectrum Analysis Explained

Author: Anonymous

Publisher: BoD – Books on Demand

Published: 2023-04-13

Total Pages: 133

ISBN-13: 3382182327

DOWNLOAD EBOOK

Reprint of the original, first published in 1872. The publishing house Anatiposi publishes historical books as reprints. Due to their age, these books may have missing pages or inferior quality. Our aim is to preserve these books and make them available to the public so that they do not get lost.


Spectral Analysis of Signals

Spectral Analysis of Signals

Author: Yanwei Wang

Publisher: Morgan & Claypool Publishers

Published: 2005

Total Pages: 108

ISBN-13: 1598290002

DOWNLOAD EBOOK

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.


Singular Spectrum Analysis for Time Series

Singular Spectrum Analysis for Time Series

Author: Nina Golyandina

Publisher: Springer Nature

Published: 2020-11-23

Total Pages: 156

ISBN-13: 3662624362

DOWNLOAD EBOOK

This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.


Speech Spectrum Analysis

Speech Spectrum Analysis

Author: Sean A. Fulop

Publisher: Springer Science & Business Media

Published: 2011-05-26

Total Pages: 214

ISBN-13: 3642174787

DOWNLOAD EBOOK

The accurate determination of the speech spectrum, particularly for short frames, is commonly pursued in diverse areas including speech processing, recognition, and acoustic phonetics. With this book the author makes the subject of spectrum analysis understandable to a wide audience, including those with a solid background in general signal processing and those without such background. In keeping with these goals, this is not a book that replaces or attempts to cover the material found in a general signal processing textbook. Some essential signal processing concepts are presented in the first chapter, but even there the concepts are presented in a generally understandable fashion as far as is possible. Throughout the book, the focus is on applications to speech analysis; mathematical theory is provided for completeness, but these developments are set off in boxes for the benefit of those readers with sufficient background. Other readers may proceed through the main text, where the key results and applications will be presented in general heuristic terms, and illustrated with software routines and practical "show-and-tell" discussions of the results. At some points, the book refers to and uses the implementations in the Praat speech analysis software package, which has the advantages that it is used by many scientists around the world, and it is free and open source software. At other points, special software routines have been developed and made available to complement the book, and these are provided in the Matlab programming language. If the reader has the basic Matlab package, he/she will be able to immediately implement the programs in that platform---no extra "toolboxes" are required.


Singular Spectrum Analysis of Biomedical Signals

Singular Spectrum Analysis of Biomedical Signals

Author: Saeid Sanei

Publisher: CRC Press

Published: 2015-12-23

Total Pages: 270

ISBN-13: 1466589280

DOWNLOAD EBOOK

Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its


Bayesian Spectrum Analysis and Parameter Estimation

Bayesian Spectrum Analysis and Parameter Estimation

Author: G. Larry Bretthorst

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 210

ISBN-13: 146849399X

DOWNLOAD EBOOK

This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate level study of physics should be able to follow the material contained in this book, though not without eIfort. From the time the dissertation was written until now (approximately one year) our understanding of the parameter estimation problem has changed extensively. We have tried to incorporate what we have learned into this book. I am indebted to a number of people who have aided me in preparing this docu ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat Gibbons who acted as readers and editors. In addition, I must extend my deepest thanks to Dr. Joseph Ackerman for his support during the time this manuscript was being prepared.


Singular Spectrum Analysis

Singular Spectrum Analysis

Author: J.B. Elsner

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 167

ISBN-13: 1475725140

DOWNLOAD EBOOK

The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- • Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.


Introduction to Spectral Analysis

Introduction to Spectral Analysis

Author: Petre Stoica

Publisher: Pearson Education

Published: 1997

Total Pages: 358

ISBN-13:

DOWNLOAD EBOOK

This book presents an introduction to spectral analysis that is designed for either course use or self-study. Clear and concise in approach, it develops a firm understanding of tools and techniques as well as a solid background for performing research. Topics covered include nonparametric spectrum analysis (both periodogram-based approaches and filter- bank approaches), parametric spectral analysis using rational spectral models (AR, MA, and ARMA models), parametric method for line spectra, and spatial (array) signal processing. Analytical and Matlab-based computer exercises are included to develop both analytical skills and hands-on experience.