Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-06-08

Total Pages: 436

ISBN-13: 3527332928

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.


Handbook of Organic Materials for Electronic and Photonic Devices

Handbook of Organic Materials for Electronic and Photonic Devices

Author: Oksana Ostroverkhova

Publisher: Woodhead Publishing

Published: 2018-11-30

Total Pages: 914

ISBN-13: 0081022859

DOWNLOAD EBOOK

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. - Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials - Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices - New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication


Organic Conductors

Organic Conductors

Author: Jean-Pierre Farges

Publisher: CRC Press

Published: 2022-09-16

Total Pages: 874

ISBN-13: 1000723585

DOWNLOAD EBOOK

This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.


Organic Semiconductors for Optoelectronics

Organic Semiconductors for Optoelectronics

Author: Hiroyoshi Naito

Publisher: John Wiley & Sons

Published: 2021-08-02

Total Pages: 388

ISBN-13: 1119146100

DOWNLOAD EBOOK

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.


Fundamentals of Electrochemistry

Fundamentals of Electrochemistry

Author: Vladimir S. Bagotsky

Publisher: John Wiley & Sons

Published: 2005-12-02

Total Pages: 752

ISBN-13: 0471741981

DOWNLOAD EBOOK

Fundamentals of Electrochemistry provides the basic outline of most topics of theoretical and applied electrochemistry for students not yet familiar with this field, as well as an outline of recent and advanced developments in electrochemistry for people who are already dealing with electrochemical problems. The content of this edition is arranged so that all basic information is contained in the first part of the book, which is now rewritten and simplified in order to make it more accessible and used as a textbook for undergraduate students. More advanced topics, of interest for postgraduate levels, come in the subsequent parts. This updated second edition focuses on experimental techniques, including a comprehensive chapter on physical methods for the investigation of electrode surfaces. New chapters deal with recent trends in electrochemistry, including nano- and micro-electrochemistry, solid-state electrochemistry, and electrocatalysis. In addition, the authors take into account the worldwide renewal of interest for the problem of fuel cells and include chapters on batteries, fuel cells, and double layer capacitors.


Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces

Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces

Author: Raphael Schlesinger

Publisher: Springer

Published: 2016-11-21

Total Pages: 223

ISBN-13: 3319466240

DOWNLOAD EBOOK

This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.


Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites

Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites

Author: Victor I. Krinichnyi

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 230

ISBN-13: 1315349620

DOWNLOAD EBOOK

Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.


Encyclopedia of Interfacial Chemistry

Encyclopedia of Interfacial Chemistry

Author:

Publisher: Elsevier

Published: 2018-03-29

Total Pages: 5276

ISBN-13: 0128098945

DOWNLOAD EBOOK

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions