This book systematically provides an overview of the use of a wide range of spectroscopic methods (Mid- and Near-Infrared, Infrared Emission, Raman, Solid-State Magic Angle Spinning Nuclear Magnetic Resonance, X-ray Photoelectron, Extended X-ray Absorption Fine Structure, X-ray Absorption Near Edge, Electron Spin and Mössbauer spectroscopy) to investigate kaolin minerals (kaolinite, dickite, nacrite and halloysite) and their modifications (intercalation compounds, nanocomposites and other modifications).
This book systematically provides an overview of the use of a wide range of spectroscopic methods (Mid- and Near-Infrared, Infrared Emission, Raman, Solid-State Magic Angle Spinning Nuclear Magnetic Resonance, X-ray Photoelectron, Extended X-ray Absorption Fine Structure, X-ray Absorption Near Edge, Electron Spin and Mössbauer spectroscopy) to investigate kaolin minerals (kaolinite, dickite, nacrite and halloysite) and their modifications (intercalation compounds, nanocomposites and other modifications).
This book gives an update on recent developments in different engineering disciplines such as mechanical, materials, computer and process engineering, focusing on modern engineering design applications. These disciplines provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by an interaction of different disciplines and a strong shift to computer-based approaches where only a few experiments are performed for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also connected to environmental demands. In the transportation industry (e.g., automotive), this is connected to the demand for higher fuel efficiency, which is related to the operational costs and the lower harm for the environment. One way to fulfill such requirements is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health, medical and environmental sector. The chapters are selected contributions of the Advanced Computational Engineering and Experimenting conference, held in July 2022 in Florence, Italy.
This book addresses the basic understanding of food contaminants and their sources, followed by the techniques to measure food safety and quality. It is divided into four parts: Part A - sources of contaminants in foods, their associated health risks, and integrated management and alternative options to minimize contaminants; Part B - Technological assessment of conventional methods and selected advanced methods for the detection, identification and enumeration of microbial contaminates; Part C - Technological assessment of different chemical measurements techniques; and Part D – Technological assessment of different instrumental techniques to assess sensory properties of foods. Food safety is a growing concern due to the increase in food-borne illnesses caused by food adulteration, excessive use of pesticides, use of chemical preservatives and artificial fruit ripening agents, microbial contaminations, and improper food handling. Chemical contaminants in food could be transferred from environmental or agrochemical sources, personal care products, and other by-products of water disinfects. In addition, microbial food safety can be threatened due to the presence of many pathogens, such as Salmonella, Escherichia coli, Clostridium botulinum, Staphylococcus aureus, and Listeria monocytogenes in foods. Globally, strict regulations are imposed to limit the potential contaminants in foods. Development of accurate, rapid, and inexpensive approaches to test food contamination and adulteration would be highly valued to ensure global food safety. There are existing processes to ensure safety of food products from chemical and microbial contaminants. Apart from the existing measurement technologies, varieties of new techniques are also being emerged and these could be potential to ensure food safety and quality. In addition to chemical and microbial properties, sensory properties such as texture, mouth feel, flavor, and taste, are among the most important attributes of food products to ensure their acceptability by consumers. Two approaches are available to evaluate sensory properties of food products, namely subjective and objective analyses. The responses are perceived by all five senses: smell, taste, sight, touch, and hearing. The approach used in sensory evaluation varies depending on the types of foods and the ultimate goal of the testing. Sensory attributes are the most important quality parameters after ensuring the safety of foods.
HIGH ELECTRICAL RESISTANCE CREAMICS Pond and fly ash waste materials generated by thermal power stations pollute the environment; this book demonstrates how the utilization of these materials minimizes environmental pollution and conserves land for cultivation. This book highlights the preparation of ceramics using pond/fly ash. Since the mullite phase formed by heat treatment improves the properties of ceramics, current investigations will perhaps be the first attempt to develop ceramics using pond ash. The properties of components made with these developed ceramics are found to be comparable to those made with porcelain. The extensively reviewed chapters of this book illustrate the current status of research on these materials. At the end of each of the 10 chapters, conclusions are drawn which will benefit researchers working in this area. Subjects discussed include: The fundamentals of thermal power plant wastes; Different production methods of ceramics and various characterization techniques; The preparation of ceramics from fly ash and fly ash/kaolin composite; The production of ceramics using pond ash; The preparation and characterization of geopolymer from pond ash and the preparation of pond ash composite; Production of ceramic matrix composite (CMC) using pond ash and pyrophyllite; The preparation of ceramics using pond ash and k-feldspar mixture. Audience The book will be used by civil engineers in the construction and ceramic industries as well as the industrial waste sector. Researchers in materials science, structural, civil and electrical engineering, environmental science, and ceramic engineering, will also have interest. Industries that have an interest include construction, electrical, and ceramic industries as well as pollution and waste sectors.
HIGH ELECTRICAL RESISTANT MATERIALS The book describes how the utilization of high-carbon slag/pond ash/fly ash for making value-added ceramics is useful for the electrical sectors. Since waste materials are currently endangering our environment, ways of utilizing them have become a global challenge. Currently, R&D work is being carried out to utilize these materials for producing value-added products. This book details the investigations to utilize fly ash (FA) and pond ash (PA) - both waste materials from thermal power plants - with high-carbon ferrochrome (HCFC) slag (by-product of the ferrochrome industry), for producing a novel material for ceramics. Kaolin/K-feldspar is mixed with PA/HCFC slag to produce ceramics with the formation of mullite. The FA/PA/HCFC slag-based ceramics can replace porcelain-based ceramics, and some permanent ceramic structures can be constructed with such wastes. Properties and structures made with ceramics are found to be comparable with those made with porcelain-based ceramics. Performances of these materials above ambient temperature have been evaluated and results indicate the possible replacement of porcelain with these newly invented ceramics. Audience The book will be used by electrical and civil engineers in the electrical, construction, and ceramic industries as well as the industrial waste sector. Researchers in materials science, structural, civil and electrical engineering, environmental science, and ceramic engineering, will also have high interest.
Infrared and Raman Spectroscopies of Clay Minerals, Volume 8 in the Developments in Clay Science series, is an up-to-date overview of spectroscopic techniques used in the study of clay minerals. The methods include infrared spectroscopy, covering near-IR (NIR), mid-IR (MIR), far-IR (FIR) and IR emission spectroscopy (IES), as well as FT-Raman spectroscopy and Raman microscopy. This book complements the succinct introductions to these methods described in the original Handbook of Clay Science (Volumes 1, 1st Edition and 5B, 2nd Edition), offering greater depth and featuring the most important literature since the development and application of these techniques in clay science. No other book covers such a wide variety of vibrational spectroscopic techniques in a single volume for clay and soil scientists. - Includes a systematic review of spectroscopic methods - Covers the theory of infrared and Raman spectroscopies and instrumentation - Features a series of chapters each covering either a particular technique or application
The second edition of The Chemistry of Clay-Organic Reactions book provides a comprehensive and fully updated summary of the literature on the interactions of clay minerals with organic molecules, including reaction mechanisms and bonding modes together with their practical and industrial applications. The reader will gain an insight into the formation and properties of complexes between clay minerals and a variety of organic compounds and the use of such complexes as sorbents and carriers of organic pollutants, pesticides, dyes, and pharmaceuticals. KEY FEATURES An authoritative resource providing a detailed synthesis of published data on clay-organic complexes and reactions. Authored by a globally recognized expert in the field. Describes developments in the interactions of organic compounds with fibrous and short-range order clay minerals. This book is written for environmental and industrial chemists, organic geochemists, and soil scientists, and it will appeal to academics, researchers, industry professionals, and graduate students.
Nanosized Tubular Clay Minerals provides the latest coverage from leading scientists on a wide field of expertise regarding the current state of knowledge about nanosized tubular clay minerals. All chapters have been carefully edited and coordinated, and readers will find a resource that provides a clear view of the fundamental properties of clay materials and how their properties vary in chemical composition, structure, and the ways in which their modes of occurrence affect their engineering applications. Besides being a great reference, the book provides research scientists, university teachers, industrial chemists, physicists, graduate students, and environmental engineers and technologists with the ability to analyze and characterize clays and clay minerals to improve selectivity, along with techniques on how they can apply clays in ceramics in all aspects of industrial, geotechnical, agricultural, and environmental use. - Examines clay properties from the molecular to the macroscopic scale - Addresses experimental and modeling issues - Authored by experts who are well-versed in the properties of nanosized tubular clay minerals
A knowledge of clay is important in many spheres of scientific endeav our, particularly in natural sciences such as geology, mineralogy and soil science, but also in more applied areas like environmental and mater ials science. Over the last two decades research into clay mineralogy has been strongly influenced by the development and application of a num ber of spectroscopic techniques which are now able to yield information about clay materials at a level of detail that previously would have seemed inconceivable. This information relates not only to the precise characterization of the individual clay components themselves, but also to the ways in which these components interact with a whole range of absorbate molecules. At present, however, the fruits of this research are to be found principally in a somewhat widely dispersed form in the scientific journals, and it was thus considered to be an appropriate time to bring together a compilation of these spectroscopic techniques in a way which would make them more accessible to the non-specialist. This is the primary aim of this book. The authors of the various chapters first describe the principles and instrumentation of the individual spectro scopic techniques, assuming a minimum of prior knowledge, and then go on to show how these methods have been usefully applied to clay mineralogy in its broadest context.