Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Author: Hajime Urakawa

Publisher: World Scientific Publishing Company

Published: 2017

Total Pages: 350

ISBN-13: 9789813109087

DOWNLOAD EBOOK

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.


Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Author: Hajime Urakawa

Publisher: World Scientific

Published: 2017-06-02

Total Pages: 310

ISBN-13: 9813109106

DOWNLOAD EBOOK

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold

Author: Steven Rosenberg

Publisher: Cambridge University Press

Published: 1997-01-09

Total Pages: 190

ISBN-13: 9780521468312

DOWNLOAD EBOOK

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry

Author: M.-E. Craioveanu

Publisher: Springer Science & Business Media

Published: 2001-10-31

Total Pages: 330

ISBN-13: 9781402000522

DOWNLOAD EBOOK

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.


Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces

Author: Peter Buser

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 473

ISBN-13: 0817649921

DOWNLOAD EBOOK

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.


Le spectre des surfaces hyperboliques

Le spectre des surfaces hyperboliques

Author: Nicolas Bergeron

Publisher: Harlequin

Published: 2011

Total Pages: 350

ISBN-13: 2759805646

DOWNLOAD EBOOK

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called ĺlarithmetic hyperbolic surfacesĺl, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.


Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold

Author: Steve Zelditch

Publisher: American Mathematical Soc.

Published: 2017-12-12

Total Pages: 410

ISBN-13: 1470410370

DOWNLOAD EBOOK

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.


Spectral Graph Theory

Spectral Graph Theory

Author: Fan R. K. Chung

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 228

ISBN-13: 0821803158

DOWNLOAD EBOOK

This text discusses spectral graph theory.