Speckle Photography for Fluid Mechanics Measurements

Speckle Photography for Fluid Mechanics Measurements

Author: Nikita A. Fomin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 253

ISBN-13: 3662037076

DOWNLOAD EBOOK

Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.


Fluid Mechanics Measurements

Fluid Mechanics Measurements

Author: R. Goldstein

Publisher: Routledge

Published: 2017-11-13

Total Pages: 600

ISBN-13: 1351447831

DOWNLOAD EBOOK

This revised edition provides updated fluid mechanics measurement techniques as well as a comprehensive review of flow properties required for research, development, and application. Fluid-mechanics measurements in wind tunnel studies, aeroacoustics, and turbulent mixing layers, the theory of fluid mechanics, the application of the laws of fluid mechanics to measurement techniques, techniques of thermal anemometry, laser velocimetry, volume flow measurement techniques, and fluid mechanics measurement in non-Newtonian fluids, and various other techniques are discussed.


Advances in Fluid Mechanics Measurements

Advances in Fluid Mechanics Measurements

Author: MOHAMED GAD-EL-HAK

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 611

ISBN-13: 3642837875

DOWNLOAD EBOOK

One cannot overemphasize the importance of studying fluids in motion or at rest for a variety of scientific and engineering endeavors. Fluid mechanics as an art reaches back into antiquity, but its rational formulation is a relatively recent undertaking. Much of the physics of a particular flow situation can be understood by conducting appropriate experiments. Flow visualization techniques offer a useful tool to establish an overall picture of a flow field and to delineate broadly its salient features before embarking on more detailed quantitative measurements. Among the single-point measurements that are particularly difficult are those in separated flows, non-Newtonian fluids, rotating flows, and nuclear aerosols. Pressure, shear stress, vorticity, and heat transfer coefficient are also difficult quantities to measure, particularly for time-dependent flows. These and other special situations are among the topics covered in this volume. Each article emphasizes the development of a particular measuring technique. The topics covered were chosen because of their importance to the field, recent appeal, and potential for future development. The articles are comprehensive and coverage is pedagogical with a bias towards recent developments.


Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993

Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993

Author: M.D. Kelleher

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 1002

ISBN-13: 044459860X

DOWNLOAD EBOOK

The papers contained in this volume reflect the ingenuity and originality of experimental work in the areas of fluid mechanics, heat transfer and thermodynamics. The contributors are drawn from 27 countries which indicates how well the worldwide scientific community is networked. The papers cover a broad spectrum from the experimental investigation of complex fundamental physical phenomena to the study of practical devices and applications. A uniform outline and method of presentation has been used for each paper.


New Results in Numerical and Experimental Fluid Mechanics VIII

New Results in Numerical and Experimental Fluid Mechanics VIII

Author: Andreas Dillmann

Publisher: Springer Science & Business Media

Published: 2012-12-27

Total Pages: 747

ISBN-13: 364235680X

DOWNLOAD EBOOK

This volume contains the contributions to the 17th Symposium of STAB (German Aerospace Aerodynamics Association). STAB includes German scientists and engineers from universities, research establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics, mainly for aerospace but also for other applications. Many of the contributions collected in this book present results from national and European Community sponsored projects. This volume gives a broad overview of the ongoing work in this field in Germany and spans a wide range of topics: airplane aerodynamics, multidisciplinary optimization and new configurations, hypersonic flows and aerothermodynamics, flow control (drag reduction and laminar flow control), rotorcraft aerodynamics, aeroelasticity and structural dynamics, numerical simulation, experimental simulation and test techniques, aeroacoustics as well as the new fields of biomedical flows, convective flows, aerodynamics and acoustics of high-speed trains.


Optical Measurements

Optical Measurements

Author: Oliver Feldmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 416

ISBN-13: 3642564437

DOWNLOAD EBOOK

Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical engi neering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for de veloping constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program. Furthermore, a detailed insight with high local and temporal resolution into the thermo and fluiddynamic situations is necessary. Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone.


Laser Techniques for Fluid Mechanics

Laser Techniques for Fluid Mechanics

Author: R.J. Adrian

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 555

ISBN-13: 3662082632

DOWNLOAD EBOOK

This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilitate new improved fluid mechanic research. Attention was placed on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars, such as particle image velocimetry and laser induced fluorescence.


Optical Methods for Data Processing in Heat and Fluid Flow

Optical Methods for Data Processing in Heat and Fluid Flow

Author: Clive Greated

Publisher: John Wiley & Sons

Published: 2002-08-30

Total Pages: 328

ISBN-13: 9781860582813

DOWNLOAD EBOOK

Optical methods are now used routinely for the measurement of velocity, concentration, temperature, and other parameters in wide-ranging areas of industrial research and design such as IC engines, turbines, and combustors. Recent advances such as the use of high-resolution CCD cameras and the extension of flow mapping to three dimensions, make optical tools such as particle image velocimetry increasingly viable for use in the industrial environment. This excellent book presents new developments in optical diagnostic techniques in heat and fluid flow and offers an unparalleled opportunity for industrialists and academic researchers to exchange ideas. CONTENTS INCLUDE: Comparison of injector sprays for gasoline direct-injection engines The design, development, and preliminary results from a high-speed, optically accessed, single cylinder engine The reflected spectrum of complex multi-layered inhomogeneous highly scattering medium Development of full volume digital holography for particle measurement Improved liquid crystal thermography by using true-colour image processing technology Development of an optical measuring technique for the study of acoustical phenomena Spatio-temporal reconstruction of the unsteady wake of axisymmetric bluff bodies via time-recording DPIV Application of particle image velocimetry to helicopter vortex interactions Pulsed laser particle image velocimetry using a fibre-optic delivery system Automated fringe analysis for profilometric mass-transfer experiments.


Advances in Speckle Metrology and Related Techniques

Advances in Speckle Metrology and Related Techniques

Author: Guillermo H. Kaufmann

Publisher: John Wiley & Sons

Published: 2011-01-25

Total Pages: 322

ISBN-13: 3527633871

DOWNLOAD EBOOK

Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the last decade, as well as applications to experimental mechanics, material science, optical testing, and fringe analysis.