Our understanding of the function of natural killer (NK) cells has dramatically changed in recent years. The discovery of NK receptors specific for MHC class I molecules, and the study of the role of co-stimulatory and adhesion molecules have led to an understanding of how NK cells recognize tumor and virally infected cells that have lost expression of MHC class I molecules or have altered distribution of normal cell surface molecules. Such recognition events lead to intracellular signals which can be either stimulatory or inhibitory. This book provides an insight into how NK cells develop, how they learn to distinguish altered cells from normal cells, and into their biological role in controlling infections and tumors.
T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
In Natural Killer Cell Protocols: Cellular and Molecular Methods, Kerry S. Campbell and Marco Colonna have assembled a comprehensive collection of readily reproducible methods designed to study natural killer (NK) cells from the broadest variety of viewpoints. These include not only classic techniques, but also new approaches to standard methods, newly evolved techniques that have become valuable for specific applications, and unique models for manipulating and studying NK cells. Among the advanced methods covered are those for in vitro transendothelial migration, in vivo detection of cells migrating into tumors, immunofluorescence staining of intracellular cytokines, and in vitro NK cell development. Valuable techniques for specific applications include vaccinia virus protein expression, soluble KIR-Fc fusions for HLA class I binding assays, calcium mobilization in cell conjugates, and identification of heterodimeric receptor complexes using cDNA library expression cloning. No less important are accounts of such classic methods as hybrid resistance, ADCC, viral defense, target cell cytotoxicity assays, cloning and culturing, tumor immunotherapy, and generation of HLA class I transfected target cells. Natural Killer Cell Protocols: Cellular and Molecular Methods offers immunologists, cancer researchers, virologists, and cell biologists today's most comprehensive collection of both established and cutting-edge techniques, methods that will contribute significantly to advancing our understanding of this fascinating and critically important class of cells.
This new collection features the most up-to-date essential protocols that are currently being used to study the immune synapse. Beginning with methods for making biophysical measurements, the volume continues by covering the cell biology of synapses, methods for advanced substrate engineering, mechanobiology topics, new technologies to describe and manipulate synaptic components, as well as methods related to sites of action and immunotherapy. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, The Immune Synapse: Methods and Protocols, Second Edition serves as an ideal practical guide for researchers working in this dynamic field. Chapters 5, 11,18, 27, 30, and 32 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The Guide to Investigation of Mouse Pregnancy is the first publication to cover the mouse placenta or the angiogenic tree the mother develops to support the placenta. This much-needed resource covers monitoring of the cardiovascular system, gestational programming of chronic adult disease, epigenetic regulation, gene imprinting, and stem cells. Offering detailed and integrated information on how drugs, biologics, stress, and manipulations impact pregnancy in the mouse model, this reference highlights techniques used to analyze mouse pregnancy. Joining the ranks of much referenced mouse resources, The Guide to Investigation of Mouse Pregnancy is the only manual providing needed content on pregnancy in animal models for translational medicine and research. - Provides instruction on how to collect pre-clinical data on pregnancy in mouse models for eventual use in human applications - Describes the angiogenic tree the mother's uterus develops to support pregnancy and the monitoring of pregnancy-induced cardiovascular changes - Educates readers on placental cell lineages, decidual development including immune cells, epigenetic regulation, gene imprinting, stem cells, birth and lactation - Discusses how stress, environmental toxicants and other manipulations impact upon placental function and pregnancy success
Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells. - Clarifies the different mechanisms of IgG activity at the level of the different model systems used, including human genetic, mouse, and in vitro - Covers the role of antibodies in cancer, infectious disease, and autoimmunity and in the setting of monoclonal antibody therapy as well as naturally raised antibodies - Color illustrations enhance explanations of the immune system
This volume contains collection of Natural Killer Cell methodologies relevant for both basic and translational research. These methodologies present new developments in the natural killer (NK) cell field, such as understanding the influence of NK cells metabolism on its function, identifying complexity of NK cell subsets through mass cytometry, and determining the emergence of memory NK cells in murine model of MCMV infection. Methods that study NK cell migration and cytotoxicity through endpoint analysis or live single cell imaging are also discussed. Chapters also describe methods pertaining to translational application of NK cells, such as ex vivo expansion of NK cells on K562 cell lines genetically modified to express either membrane bound IL-15 or membrane bound IL-21, large scale NK cell culture, current techniques for engineering NK cells to express chimeric antigen receptors or chemokine receptors using retroviral vectors, electroporation of mRNA, and the natural phenomenon of trogocytosis. Written in the highly successful Methods in Molecular Biology series format, these chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, Natural Killer Cells: Methods and Protocols is a valuable resource for researchers who not only want to understand mechanisms that govern NK cell behavior and diversity, but also for those who want to understand how to systematically evaluate NK cells for adoptive immunotherapy applications.