Specification and Estimation of Count Data Regression and Sample Selection Models
Author: Lung-fei Lee
Publisher:
Published: 1996
Total Pages: 50
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Lung-fei Lee
Publisher:
Published: 1996
Total Pages: 50
ISBN-13:
DOWNLOAD EBOOKAuthor: William Greene
Publisher: Now Publishers Inc
Published: 2007
Total Pages: 120
ISBN-13: 160198054X
DOWNLOAD EBOOKThis study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents-R & D relationship, Econometrica 52, 909-938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies
Author: A. Colin Cameron
Publisher: Cambridge University Press
Published: 2013-05-27
Total Pages: 597
ISBN-13: 1107717795
DOWNLOAD EBOOKStudents in both social and natural sciences often seek regression methods to explain the frequency of events, such as visits to a doctor, auto accidents, or new patents awarded. This book, now in its second edition, provides the most comprehensive and up-to-date account of models and methods to interpret such data. The authors combine theory and practice to make sophisticated methods of analysis accessible to researchers and practitioners working with widely different types of data and software in areas such as applied statistics, econometrics, marketing, operations research, actuarial studies, demography, biostatistics and quantitative social sciences. The new material includes new theoretical topics, an updated and expanded treatment of cross-section models, coverage of bootstrap-based and simulation-based inference, expanded treatment of time series, multivariate and panel data, expanded treatment of endogenous regressors, coverage of quantile count regression, and a new chapter on Bayesian methods.
Author: Adrian Colin Cameron
Publisher: Cambridge University Press
Published: 2013-05-27
Total Pages: 597
ISBN-13: 1107014166
DOWNLOAD EBOOKThis book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.
Author: Rainer Winkelmann
Publisher: Springer Science & Business Media
Published: 2013-06-29
Total Pages: 291
ISBN-13: 3662041499
DOWNLOAD EBOOKThe primary objective of this book is to provide an introduction to the econometric modeling of count data for graduate students and researchers. It should serve anyone whose interest lies either in developing the field fur ther, or in applying existing methods to empirical questions. Much of the material included in this book is not specific to economics, or to quantita tive social sciences more generally, but rather extends to disciplines such as biometrics and technometrics. Applications are as diverse as the number of congressional budget vetoes, the number of children in a household, and the number of mechanical defects in a production line. The unifying theme is a focus on regression models in which a dependent count variable is modeled as a function of independent variables which mayor may not be counts as well. The modeling of count data has come of age. Inclusion of some of the fundamental models in basic textbooks, and implementation on standard computer software programs bear witness to that. Based on the standard Poisson regression model, numerous extensions and alternatives have been developed to address the common challenges faced in empirical modeling (unobserved heterogeneity, selectivity, endogeneity, measurement error, and dependent observations in the context of panel data or multivariate data, to name but a few) as well as the challenges that are specific to count data (e. g. , over dispersion and underdispersion).
Author: Rainer Winkelmann
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 223
ISBN-13: 366221735X
DOWNLOAD EBOOKThis book presents statistical methods for the analysis of events. The primary focus is on single equation cross section models. The book addresses both the methodology and the practice of the subject and it provides both a synthesis of a diverse body of literature that hitherto was available largely in pieces, as well as a contribution to the progress of the methodology, establishing several new results and introducing new models. Starting from the standard Poisson regression model as a benchmark, the causes, symptoms and consequences of misspecification are worked out. Both parametric and semi-parametric alternatives are discussed. While semi-parametric models allow for robust interference, parametric models can identify features of the underlying data generation process.
Author: Paul Roback
Publisher: CRC Press
Published: 2021-01-14
Total Pages: 436
ISBN-13: 1439885400
DOWNLOAD EBOOKBeyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Author: Joseph M. Hilbe
Publisher: Cambridge University Press
Published: 2014-07-21
Total Pages: 301
ISBN-13: 1107028337
DOWNLOAD EBOOKThis book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.
Author: Jianguo Sun
Publisher: Springer Science & Business Media
Published: 2013-10-09
Total Pages: 283
ISBN-13: 1461487153
DOWNLOAD EBOOKPanel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.
Author: J. Scott Long
Publisher: SAGE
Published: 1997-01-09
Total Pages: 334
ISBN-13: 9780803973749
DOWNLOAD EBOOKEvaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.