Navigation and Control of Autonomous Marine Vehicles

Navigation and Control of Autonomous Marine Vehicles

Author: Sanjay Sharma

Publisher: Institution of Engineering and Technology

Published: 2019-04-02

Total Pages: 348

ISBN-13: 1785613383

DOWNLOAD EBOOK

Robotic marine vessels can be used for a wide range of purposes, including defence, marine science, offshore energy and hydrographic surveys, and environmental surveys and protection. Such vessels need to meet a variety of criteria: they must be able to operate in salt water, and to communicate and be controlled over large distances, even when submerged or in inclement weather. Further challenges include 3D navigation of individual vehicles, groups or squadrons.


Sensing and Control for Autonomous Vehicles

Sensing and Control for Autonomous Vehicles

Author: Thor I. Fossen

Publisher: Springer

Published: 2017-05-26

Total Pages: 513

ISBN-13: 3319553720

DOWNLOAD EBOOK

This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.


Autonomous Underwater Vehicles

Autonomous Underwater Vehicles

Author: Frank Ehlers

Publisher: SciTech Publishing

Published: 2020-08-26

Total Pages: 591

ISBN-13: 1785617036

DOWNLOAD EBOOK

This book gives a state-of-the-art overview of the hot topic of autonomous underwater vehicle (AUV) design and practice. It covers a wide range of AUV application areas such as education and research, biological and oceanographic studies, surveillance purposes, military and security applications and industrial underwater applications.


Autonomous Vehicles in Support of Naval Operations

Autonomous Vehicles in Support of Naval Operations

Author: National Research Council

Publisher: National Academies Press

Published: 2005-08-05

Total Pages: 256

ISBN-13: 0309181232

DOWNLOAD EBOOK

Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.


Navy Large Unmanned Surface and Undersea Vehicles

Navy Large Unmanned Surface and Undersea Vehicles

Author: Ronald O'Rourke

Publisher:

Published: 2019-06-24

Total Pages: 30

ISBN-13: 9781075833274

DOWNLOAD EBOOK

The Navy wants to develop and procure three new types of unmanned vehicles (UVs) in FY2020 and beyond-Large Unmanned Surface Vehicles (LUSVs), Medium Unmanned Surface Vehicles (MUSVs), and Extra-Large Unmanned Undersea Vehicles (XLUUVs). The Navy is requesting $628.8 million in FY2020 research and development funding for these three UV programs and their enabling technologies. The Navy wants to acquire these three types of UVs (which this report refers to collectively as large UVs) as part of an effort to shift the Navy to a new fleet architecture (i.e., a new combination of ships and other platforms) that is more widely distributed than the Navy's current architecture. Compared to the current fleet architecture, this more-distributed architecture is to include proportionately fewer large surface combatants (i.e., cruisers and destroyers), proportionately more small surface combatants (i.e., frigates and Littoral Combat Ships), and the addition of significant numbers of large UVs. The Navy wants to employ accelerated acquisition strategies for procuring these large UVs, so as to get them into service more quickly. The emphasis that the Navy placed on UV programs in its FY2020 budget submission and the Navy's desire to employ accelerated acquisition strategies in acquiring these large UVs together can be viewed as an expression of the urgency that the Navy attaches to fielding large UVs for meeting future military challenges from countries such as China. The LUSV program is a proposed new start project for FY2020. The Navy wants to procure two LUSVs per year in FY2020FY2024. The Navy wants LUSVs to be low-cost, high-endurance, reconfigurable ships based on commercial ship designs, with ample capacity for carrying various modular payloads-particularly anti-surface warfare (ASuW) and strike payloads, meaning principally anti-ship and land-attack missiles. The Navy reportedly envisions LUSVs as being 200 feet to 300 feet in length and having a full load displacement of about 2,000 tons. The MUSV program began in FY2019. The Navy plans to award a contract for the first MUSV in FY2019 and wants to award a contract for the second MUSV in FY2023. The Navy wants MUSVs, like LUSVs, to be low-cost, high-endurance, reconfigurable ships that can accommodate various payloads. Initial payloads for MUSVs are to be intelligence, surveillance and reconnaissance (ISR) payloads and electronic warfare (EW) systems. The Navy defines MUSVs as having a length of between 12 meters (about 39 feet) and 50 meters (about 164 feet). The Navy wants to pursue the MUSV program as a rapid prototyping effort under what is known as Section 804 acquisition authority. The XLUUV program, also known as Orca, was established to address a Joint Emergent Operational Need (JEON). The Navy wants to procure nine XLUUVs in FY2020-FY2024. The Navy announced on February 13, 2019, that it had selected Boeing to fabricate, test, and deliver the first four Orca XLUUVs and associated support elements. On March 27, 2019, the Navy announced that the award to Boeing had been expanded to include the fifth Orca. The Navy's large UV programs pose a number of oversight issues for Congress, including issues relating to the analytical basis for the more-distributed fleet architecture; the Navy's accelerated acquisition strategies and funding method for these programs; technical, schedule, and cost risk in the programs; the proposed annual procurement rates for the programs; the industrial base implications of the programs; the personnel implications of the programs; and whether the Navy has accurately priced the work it is proposing to do in FY2020 on the programs.


Autonomous Flying Robots

Autonomous Flying Robots

Author: Kenzo Nonami

Publisher: Springer Science & Business Media

Published: 2010-09-15

Total Pages: 341

ISBN-13: 4431538569

DOWNLOAD EBOOK

The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.