This book constitutes the refereed proceedings of the Second International Conference on Computability in Europe, CiE 2006, held in Swansea, UK, June/July 2006. The book presents 31 revised full papers together with 30 invited papers, including papers corresponding to 8 plenary talks and 6 special sessions on proofs and computation, computable analysis, challenges in complexity, foundations of programming, mathematical models of computers and hypercomputers, and Gödel centenary: Gödel's legacy for computability.
This book constitutes the proceedings of the 17th Conference on Computability in Europe, CiE 2021, organized by the University of Ghent in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 48 full papers presented in this volume were carefully reviewed and selected from 50 submissions. CiE promotes the development of computability-related science, ranging over mathematics, computer science and applications in various natural and engineering sciences, such as physics and biology, as well as related fields, such as philosophy and history of computing. CiE 2021 had as its motto Connecting with Computability, a clear acknowledgement of the connecting and interdisciplinary nature of the conference series which is all the more important in a time where people are more than ever disconnected from one another due to the COVID-19 pandemic.
"This is a must-have for any researcher in vocational psychology or career counseling, or anyone who wishes to understand the empirical underpinnings of the practice of career counseling." -Mark Pope, EdD College of Education, University of Missouri - St. Louis past president of the American Counseling Association Today's career development professional must choose from a wide array of theories and practices in order to provide services for a diverse range of clients. Career Development and Counseling: Putting Theory and Research to Work focuses on scientifically based career theories and practices, including those derived from research in other disciplines. Driven by the latest empirical and practical evidence, this text offers the most in-depth, far-reaching, and comprehensive career development and counseling resource available. Career Development and Counseling includes coverage of: Major theories of career development, choice, and adjustment Informative research on occupational aspirations, job search success, job satisfaction, work performance, career development with people of color, and women's career development Assessment of interests, needs and values, ability, and other important constructs Occupational classification and sources of occupational information Counseling for school-aged youth, diverse populations, choice-making, choice implementation, work adjustment, and retirement Special needs and applications including those for at-risk, intellectually talented, and work-bound youth; people with disabilities; and individuals dealing with job loss, reentry, and career transitions Edited by two of the leading figures in career development, and featuring contributions by many of the most well-regarded specialists in the field, Career Development and Counseling: Putting Theory and Research to Work is the one book that every career counselor, vocational psychologist, and serious student of career development must have.
This volume is the first extensive study of the historical and philosophical connections between technology and mathematics. Coverage includes the use of mathematics in ancient as well as modern technology, devices and machines for computation, cryptology, mathematics in technological education, the epistemology of computer-mediated proofs, and the relationship between technological and mathematical computability. The book also examines the work of such historical figures as Gottfried Wilhelm Leibniz, Charles Babbage, Ada Lovelace, and Alan Turing.
Praise for How Learning Works "How Learning Works is the perfect title for this excellent book. Drawing upon new research in psychology, education, and cognitive science, the authors have demystified a complex topic into clear explanations of seven powerful learning principles. Full of great ideas and practical suggestions, all based on solid research evidence, this book is essential reading for instructors at all levels who wish to improve their students' learning." —Barbara Gross Davis, assistant vice chancellor for educational development, University of California, Berkeley, and author, Tools for Teaching "This book is a must-read for every instructor, new or experienced. Although I have been teaching for almost thirty years, as I read this book I found myself resonating with many of its ideas, and I discovered new ways of thinking about teaching." —Eugenia T. Paulus, professor of chemistry, North Hennepin Community College, and 2008 U.S. Community Colleges Professor of the Year from The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education "Thank you Carnegie Mellon for making accessible what has previously been inaccessible to those of us who are not learning scientists. Your focus on the essence of learning combined with concrete examples of the daily challenges of teaching and clear tactical strategies for faculty to consider is a welcome work. I will recommend this book to all my colleagues." —Catherine M. Casserly, senior partner, The Carnegie Foundation for the Advancement of Teaching "As you read about each of the seven basic learning principles in this book, you will find advice that is grounded in learning theory, based on research evidence, relevant to college teaching, and easy to understand. The authors have extensive knowledge and experience in applying the science of learning to college teaching, and they graciously share it with you in this organized and readable book." —From the Foreword by Richard E. Mayer, professor of psychology, University of California, Santa Barbara; coauthor, e-Learning and the Science of Instruction; and author, Multimedia Learning
Measuring Vulnerability to Natural Hazards presents a broad range of current approaches to measuring vulnerability. It provides a comprehensive overview of different concepts at the global, regional, national, and local levels, and explores various schools of thought. More than 40 distinguished academics and practitioners analyse quantitative and qualitative approaches, and examine their strengths and limitations. This book contains concrete experiences and examples from Africa, Asia, the Americas and Europe to illustrate the theoretical analyses.The authors provide answers to some of the key questions on how to measure vulnerability and they draw attention to issues with insufficient coverage, such as the environmental and institutional dimensions of vulnerability and methods to combine different methodologies.This book is a unique compilation of state-of-the-art vulnerability assessment and is essential reading for academics, students, policy makers, practitioners, and anybody else interested in understanding the fundamentals of measuring vulnerability. It is a critical review that provides important conclusions which can serve as an orientation for future research towards more disaster resilient communities.
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Cognitive Development in a Digital Age James Paul Gee begins his classic book with "I want to talk about video games–yes, even violent video games–and say some positive things about them." With this simple but explosive statement, one of America's most well-respected educators looks seriously at the good that can come from playing video games. This revised edition expands beyond mere gaming, introducing readers to fresh perspectives based on games like World of Warcraft and Half-Life 2. It delves deeper into cognitive development, discussing how video games can shape our understanding of the world. An undisputed must-read for those interested in the intersection of education, technology, and pop culture, What Video Games Have to Teach Us About Learning and Literacy challenges traditional norms, examines the educational potential of video games, and opens up a discussion on the far-reaching impacts of this ubiquitous aspect of modern life.
Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments. In the 1930s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics. In the decades since, the theory of computability has moved to the center of discussions in philosophy, computer science, and cognitive science. In this volume, distinguished computer scientists, mathematicians, logicians, and philosophers consider the conceptual foundations of computability in light of our modern understanding.Some chapters focus on the pioneering work by Turing, Gödel, and Church, including the Church-Turing thesis and Gödel's response to Church's and Turing's proposals. Other chapters cover more recent technical developments, including computability over the reals, Gödel's influence on mathematical logic and on recursion theory and the impact of work by Turing and Emil Post on our theoretical understanding of online and interactive computing; and others relate computability and complexity to issues in the philosophy of mind, the philosophy of science, and the philosophy of mathematics.ContributorsScott Aaronson, Dorit Aharonov, B. Jack Copeland, Martin Davis, Solomon Feferman, Saul Kripke, Carl J. Posy, Hilary Putnam, Oron Shagrir, Stewart Shapiro, Wilfried Sieg, Robert I. Soare, Umesh V. Vazirani
The aim of this handbook is to create, for the first time, a systematic account of the field of spatial logic. The book comprises a general introduction, followed by fourteen chapters by invited authors. Each chapter provides a self-contained overview of its topic, describing the principal results obtained to date, explaining the methods used to obtain them, and listing the most important open problems. Jointly, these contributions constitute a comprehensive survey of this rapidly expanding subject.