This excellent textbook offers a unique take on relativity theory, setting it in its historical context. Ideal for those interested in relativity and the history of physics, the book contains a complete account of special relativity that begins with the historical analysis of the reasons that led to a change in our view of space and time. Its aim is to foster a deep understanding of relativistic spacetime and its consequences for Dynamics.
Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO
Einstein's pioneering work helped shape the cultural landscape of the world today. Now in a digestible, pocket format for the modern reader. A new, popular edition with a clear introduction, Special & General Relativity by Albert Einstein contains his core paper, 'Relativity, The Special & The General Theory: A Popular Exposition', which established his reputation as one of the greatest thinkers of our (and perhaps any) age. Also included are two of the Princeton University lectures he gave to explain his findings in more detail, on 'The Meaning of Relativity', as well as the early paper which led to his famous equation E = mc2. The FLAME TREE Foundations series features core publications which together have shaped the cultural landscape of the modern world, with cutting-edge research distilled into pocket guides designed to be both accessible and informative.
Relativity, apart from quantum mechanics, is the greatest wonder in science, unfolded single-handedly in the 20th century by Albert Einstein. The scientist developed general relativity as a logical sequel to special relativity. This comprehensive book presents explication of the conceptual evolution and mathematical derivations of the theories of special and general relativity. The book follows an Einsteinian approach while explaining the concepts and the theories of relativity. Divided into 14 chapters, the revised edition of the book covers elementary concepts of Special relativity, as well as the advanced studies on General relativity. The recent theories like Kerr geometry, Sagnac effect, Vaidya geometry, Raychaudhuri equation and Gravitation physics vis-à-vis Quantum physics are presented in easy-to-understand language and simple style. In addition to it, the book gives an in-depth analysis on the applications of advanced theories like Vaidya-Krori-Barua solution from author’s own research works. Apart from that, the book also discusses some of the isotropic and anisotropic cosmological models, in detail. The salient topics discussed in the revised edition of the book are extrinsic curvature, detection of gravitational waves, early universe, evolution of a dead star into a white dwarf or a neutron star or a black hole, dark matter and dark energy. This book is intended for the undergraduate and postgraduate students of Physics and Mathematics. KEY FEATURES • Step-by-step derivation of equations • Easy demagogic approach • Review questions to widen the analytical understanding of the students
Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. “A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Éric Gourgoulhon.” (excerpt from the Foreword by Thibault Damour)
This text brings the challenge and excitement of modern relativity and cosmology at rigorous mathematical level within reach of advanced undergraduates and beginning graduates.