Explores the fascinating prospect of future human space travel. This volume demonstrates that such ventures may not be as difficult as one might believe and are certainly not impossible. The foundations for relativistic flight mechanics are provided in a clear and instructive manner by using well established principles which are used to explore space flight possibilities within and beyond our galaxy.
Advances in the Astronautical Sciences Series Volume 152 is a collection of scientific papers that were presented at the American Astronautical Society/American Institute of Aeronautics and Astronautics Spaceflight Mechanics Meeting held January 26-30, 2014, in Santa Fe, New Mexico.
Advances in the Astronautical Sciences Series Volume 148 is a collection of scientific papers that were presented at the American Astronautical Society/American Institute of Aeronautics and Astronautics Spaceflight Mechanics Meeting held February 10-14, 2013, in Kauai, Hawaii.
This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Advances in the Astronautical Sciences Series Volume 150 is a collection of scientific papers that were presented at the American Astronautical Society/American Institute of Aeronautics and Astronautics Astrodynamics Conference held August 11-15, 2013, in Hilton Head, South Carolina.
Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations.