Proceedings of a consultants meeting on radiation processing of polysaccharides, held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), Japan, 24-27 November 2003
Provides in-depth coverage of basic and advanced topics in data mining and knowledge discovery Presents the most popular data mining algorithms in an easy to follow format Includes instructional tutorials on applying the various data mining algorithms Provides several interesting datasets ready to be mined Offers in-depth coverage of RapidMiner Studio and Weka’s Explorer interface Teaches the reader (student,) hands-on, about data mining using RapidMiner Studio and Weka Gives instructors a wealth of helpful resources, including all RapidMiner processes used for the tutorials and for solving the end of chapter exercises. Instructors will be able to get off the starting block with minimal effort Extra resources include screenshot sequences for all RapidMiner and Weka tutorials and demonstrations, available for students and instructors alike The latest version of all freely available materials can also be downloaded at: http://krypton.mnsu.edu/~sa7379bt/
Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.
An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of sof
Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Int
The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te
Exploiting the rich information found in electronic health records (EHRs) can facilitate better medical research and improve the quality of medical practice. Until now, a trivial amount of research has been published on the challenges of leveraging this information. Addressing these challenges, Information Discovery on Electronic Health Records exp
Powerful, Flexible Tools for a Data-Driven WorldAs the data deluge continues in today's world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of incre
Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a w
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.