A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing

Author: Simon Foucart

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 634

ISBN-13: 0817649484

DOWNLOAD EBOOK

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.


Compressed Sensing in Information Processing

Compressed Sensing in Information Processing

Author: Gitta Kutyniok

Publisher: Springer Nature

Published: 2022-10-20

Total Pages: 549

ISBN-13: 3031097459

DOWNLOAD EBOOK

This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.


Compressed Sensing

Compressed Sensing

Author: Yonina C. Eldar

Publisher: Cambridge University Press

Published: 2012-05-17

Total Pages: 557

ISBN-13: 1107394392

DOWNLOAD EBOOK

Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.


Advances in Visual Data Compression and Communication

Advances in Visual Data Compression and Communication

Author: Feng Wu

Publisher: CRC Press

Published: 2014-07-25

Total Pages: 517

ISBN-13: 1482234130

DOWNLOAD EBOOK

Visual information is one of the richest and most bandwidth-consuming modes of communication. To meet the requirements of emerging applications, powerful data compression and transmission techniques are required to achieve highly efficient communication, even in the presence of growing communication channels that offer increased bandwidth. Presenting the results of the author’s years of research on visual data compression and transmission, Advances in Visual Data Compression and Communication: Meeting the Requirements of New Applications provides a theoretical and technical basis for advanced research on visual data compression and communication. The book studies the drifting problem in scalable video coding, analyzes the reasons causing the problem, and proposes various solutions to the problem. It explores the author’s Barbell-based lifting coding scheme that has been adopted as common software by MPEG. It also proposes a unified framework for deriving a directional transform from the nondirectional counterpart. The structure of the framework and the statistic distribution of coefficients are similar to those of the nondirectional transforms, which facilitates subsequent entropy coding. Exploring the visual correlation that exists in media, the text extends the current coding framework from different aspects, including advanced image synthesis—from description and reconstruction to organizing correlated images as a pseudo sequence. It explains how to apply compressive sensing to solve the data compression problem during transmission and covers novel research on compressive sensor data gathering, random projection codes, and compressive modulation. For analog and digital transmission technologies, the book develops the pseudo-analog transmission for media and explores cutting-edge research on distributed pseudo-analog transmission, denoising in pseudo-analog transmission, and supporting MIMO. It concludes by considering emerging developments of information theory for future applications.


Space Optical Remote Sensing

Space Optical Remote Sensing

Author: Jiasheng Tao

Publisher: Springer Nature

Published: 2023-07-29

Total Pages: 472

ISBN-13: 9819933188

DOWNLOAD EBOOK

This book highlights the fundamentals, technologies, and methods of space optical remote sensing and system design. The author introduces concepts and methods established during his decades of research and practice, covering topics such as difference between the spatial resolution of pixel and the resolution of traditional film, the resolution of remote sensing image for characteristics and target recognition purpose, and image shift problem of sampling image space. The book comprehensively and systematically introduces the basic concepts, theories, parameter design calculations of imaging cameras, multispectral cameras, surveying cameras, infrared cameras, and imaging spectrometers, their respective system components, and performance evaluation of space optical remote sensing systems. The book also discusses the overall design of space optical remote sensing systems, including light sources, the ground-air system, target characteristics, spectrum selection, energy calculation, orbital parameters, optical remote sensor parameters, spacecraft parameters coordination and selection, comprehensive analysis, and large-scale system performance evaluation methods, forming a complete idea on how to achieve the goals of the system design. The book enables readers to understand the working principles of the whole systems from a theoretical depth and grasp the full skillset on how to implement advantages and balance technical difficulties for orbit, subsystems of the platform, and payloads. The book is a must-read for those who seek to build strong ability for research, development, and innovation surrounding the subject matter.


An Introduction to Compressed Sensing

An Introduction to Compressed Sensing

Author: M. Vidyasagar

Publisher: SIAM

Published: 2019-12-03

Total Pages: 354

ISBN-13: 161197612X

DOWNLOAD EBOOK

Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.


Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Author: Linwei Wang

Publisher: Springer Nature

Published: 2022-09-16

Total Pages: 842

ISBN-13: 3031164466

DOWNLOAD EBOOK

The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.


Sparse and Redundant Representations

Sparse and Redundant Representations

Author: Michael Elad

Publisher: Springer Science & Business Media

Published: 2010-08-12

Total Pages: 376

ISBN-13: 1441970118

DOWNLOAD EBOOK

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.


Brain Mapping

Brain Mapping

Author:

Publisher: Academic Press

Published: 2015-02-14

Total Pages: 2668

ISBN-13: 0123973163

DOWNLOAD EBOOK

Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed