Source-channel Coding for Robust Image Transmission and for Dirty-paper Coding

Source-channel Coding for Robust Image Transmission and for Dirty-paper Coding

Author: Yong Sun

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this dissertation, we studied two seemingly uncorrelated, but conceptually related problems in terms of source-channel coding: 1) wireless image transmissionand 2) Costa ("dirty-paper") code design. In the first part of the dissertation, we consider progressive image transmission over a wireless system employing space-time coded OFDM. The space-time coded OFDM system based on a newly built broadband MIMO fading model is theoretically evaluated by assuming perfect channel state information (CSI) at the receiver for coherent detection. Then an adaptive modulation scheme is proposed to pick theconstellation size that offers the best reconstructed image quality for each averagesignal-to-noise ratio (SNR).A more practical scenario is also considered without the assumption of perfect CSI. We employ low-complexity decision-feedback decoding for differentially space-time coded OFDM systems to exploit transmitter diversity. For JSCC, we adopt a product channel code structure that is proven to provide powerful error protection and bursty error correction. To further improve the system performance, we also apply the powerful iterative (turbo) coding techniques and propose the iterative decoding of differentially space-time coded multiple descriptions of images. The second part of the dissertation deals with practical dirty-paper code designs. We first invoke an information-theoretical interpretation of algebraic binning and motivate the code design guidelines in terms of source-channel coding. Then two dirty-paper code designs are proposed. The first is a nested turbo construction based on soft-output trellis-coded quantization (SOTCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. A novel procedure is devised to balance the dimensionalities of the equivalent lattice codes corresponding to SOTCQ and TTCM. The second dirty-paper code design employs TCQ and IRA codes fornear-capacity performance. This is done by synergistically combining TCQ with IRA codes so that they work together as well as they do individually. Our TCQ/IRA design approaches the dirty-paper capacity limit at the low rate regime (e.g., 1:0 bit/sample), while our nested SOTCQ/TTCM scheme provides the best performs so far at medium-to-high rates (e.g.,= 1:0 bit/sample). Thus the two proposed practical code designs are complementary to each other.


Joint Source-Channel Decoding

Joint Source-Channel Decoding

Author: Pierre Duhamel

Publisher: Academic Press

Published: 2009-11-26

Total Pages: 337

ISBN-13: 0080922449

DOWNLOAD EBOOK

Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks


Combined Source-Channel Coding of Images

Combined Source-Channel Coding of Images

Author: J. W. Modestino

Publisher:

Published: 1978

Total Pages: 71

ISBN-13:

DOWNLOAD EBOOK

A combined source-channel coding approach is described for the encoding, transmission and remote reconstruction of image data. The source encoder employs two-dimensional (2-D) differential pulse code modulation (DPCM). This is a relatively efficient encoding scheme in the absence of channel errors. In the presence of channel errors, however, the performance degrades rapidly. By providing error control protection to those encoded bits which contribute most significantly to image reconstruction, it is possible to minimize this degradation without sacrificing transmission bandwidth. The result is a relatively robust design which is reasonably insensitive to channel errors and yet provides performance approaching the rate-distortion bound. Analytical results are provided for assumed 2-D autoregressive image models while simulation results are described for real-world images. (Author).


Joint Source-Channel Coding

Joint Source-Channel Coding

Author: Andres Kwasinski

Publisher: John Wiley & Sons

Published: 2022-11-08

Total Pages: 404

ISBN-13: 1118693795

DOWNLOAD EBOOK

Joint Source-Channel Coding Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems


Uncoded Multimedia Transmission

Uncoded Multimedia Transmission

Author: Feng Wu

Publisher: CRC Press

Published: 2021-07-18

Total Pages: 349

ISBN-13: 100040868X

DOWNLOAD EBOOK

An uncoded multimedia transmission (UMT) system is one that skips quantization and entropy coding in compression and all subsequent binary operations, including channel coding and bit-to-symbol mapping of modulation. By directly transmitting non-binary symbols with amplitude modulation, the uncoded system avoids the annoying cliff effect observed in the coded transmission system. This advantage makes uncoded transmission more suited to both unicast in varying channel conditions and multicast to heterogeneous users. Particularly, in the first part of Uncoded Multimedia Transmission, we consider how to improve the efficiency of uncoded transmission and make it on par with coded transmission. We then address issues and challenges regarding how to better utilize temporal and spatial correlation of images and video in the uncoded transmission, to achieve the optimal transmission performance. Next, we investigate the resource allocation problem for uncoded transmission, including subchannel, bandwidth and power allocation. By properly allocating these resources, uncoded transmission can achieve higher efficiency and more robust performance. Subsequently, we consider the image and video delivery in MIMO broadcasting networks with diverse channel quality and varying numbers of antennas across receivers. Finally, we investigate the cases where uncoded transmission can be used in conjunction with digital transmission for a balanced efficiency and adaptation capability. This book is the very first monograph in the general area of uncoded multimedia transmission written in a self-contained format. It addresses both the fundamentals and the applications of uncoded transmission. It gives a systematic introduction to the fundamental theory and concepts in this field, and at the same time, also presents specific applications that reveal the great potential and impacts for the technologies generated from the research in this field. By concentrating several important studies and developments currently taking place in the field of uncoded transmission in a single source, this book can reduce the time and cost required to learn and improve skills and knowledge in the field. The authors have been actively working in this field for years, and this book is the final essence of their years of long research in this field. The book may be used as a collection of research notes for researchers in this field, a reference book for practitioners or engineers, as well as a textbook for a graduate advanced seminar in this field or any related fields. The references collected in this book may be used as further reading lists or references for the readers.


Distributed Source Coding

Distributed Source Coding

Author: Shuang Wang

Publisher: John Wiley & Sons

Published: 2017-03-20

Total Pages: 379

ISBN-13: 0470688998

DOWNLOAD EBOOK

Distributed source coding is one of the key enablers for efficient cooperative communication. The potential applications range from wireless sensor networks, ad-hoc networks, and surveillance networks, to robust low-complexity video coding, stereo/Multiview video coding, HDTV, hyper-spectral and multispectral imaging, and biometrics. The book is divided into three sections: theory, algorithms, and applications. Part one covers the background of information theory with an emphasis on DSC; part two discusses designs of algorithmic solutions for DSC problems, covering the three most important DSC problems: Slepian-Wolf, Wyner-Ziv, and MT source coding; and part three is dedicated to a variety of potential DSC applications. Key features: Clear explanation of distributed source coding theory and algorithms including both lossless and lossy designs. Rich applications of distributed source coding, which covers multimedia communication and data security applications. Self-contained content for beginners from basic information theory to practical code implementation. The book provides fundamental knowledge for engineers and computer scientists to access the topic of distributed source coding. It is also suitable for senior undergraduate and first year graduate students in electrical engineering; computer engineering; signal processing; image/video processing; and information theory and communications.


Digital Communications 1

Digital Communications 1

Author: Didier Le Ruyet

Publisher: John Wiley & Sons

Published: 2015-10-02

Total Pages: 392

ISBN-13: 1119232430

DOWNLOAD EBOOK

The communication chain is constituted by a source and a recipient, separated by a transmission channel which may represent a portion of cable, an optical fiber, a radio channel, or a satellite link. Whatever the channel, the processing blocks implemented in the communication chain have the same foundation. This book aims to itemize. In this first volume, after having presented the base of the information theory, we will study the source coding techniques with and without loss. Then we analyze the correcting codes for block errors, convutional and concatenated used in current systems.


Channel Coding in the Presence of Side Information

Channel Coding in the Presence of Side Information

Author: Guy Keshet

Publisher: Now Publishers Inc

Published: 2008

Total Pages: 154

ISBN-13: 1601980485

DOWNLOAD EBOOK

Channel Coding in the Presence of Side Information reviews the concepts and methods of communication systems equipped with side information both from the theoretical and practical points of view. It is a comprehensive review that gives the reader an insightful introduction to one of the most important topics in modern communications systems.