While we may have always assumed that insects employ auditory communication, our understanding of it has been impeded by various technical challenges. In comparison to the study of an insect's visual and olfactory expression, research in the area of acoustic communication has lagged behind. Filling this void, Insect Sounds and Communication is the
Walk near woods or water on any spring or summer night and you will hear a bewildering (and sometimes deafening) chorus of frog, toad, and insect calls. How are these calls produced? What messages are encoded within the sounds, and how do their intended recipients receive and decode these signals? How does acoustic communication affect and reflect behavioral and evolutionary factors such as sexual selection and predator avoidance? H. Carl Gerhardt and Franz Huber address these questions among many others, drawing on research from bioacoustics, behavior, neurobiology, and evolutionary biology to present the first integrated approach to the study of acoustic communication in insects and anurans. They highlight both the common solutions that these very different groups have evolved to shared challenges, such as small size, ectothermy (cold-bloodedness), and noisy environments, as well as the divergences that reflect the many differences in evolutionary history between the groups. Throughout the book Gerhardt and Huber also provide helpful suggestions for future research.
This volume provides a comprehensive selection of recent studies addressing insect hearing and acoustic communication. The variety of signalling behaviours and hearing organs makes insects highly suitable animals for exploring and analysing signal generation and hearing in the context of neural processing, ecology, evolution and genetics. Across a variety of hearing species like moths, crickets, bush-crickets, grasshoppers, cicadas and flies, the leading researchers in the field cover recent scientific progress and address key points in current research, such as: - How can we approach the evolution of hearing in insects and what is the developmental and neural origin of the auditory organs? - How are hearing and sound production embedded in the natural lifestyle of the animals, allowing intraspecific communication but also predator avoidance and even predation? - What are the functional properties of hearing organs and how are they achieved at the molecular, biophysical and neural levels? - What are the neural mechanisms of central auditory processing and signal generation? The book is intended for students and researchers both inside and outside of the fascinating field of bioacoustics and aims to foster understanding of hearing and acoustic communication in insects.
Advances in Insect Physiology, Volume 61 highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Acoustic signaling in Orthoptera, Sound production in Drosophila melanogaster, and Communication by surface borne mechanical waves in insects. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Insect Physiology series
This volume explains the key ideas, questions and methods involved in studying the hidden world of vibrational communication in animals. The authors dispel the notion that this form of communication is difficult to study and show how vibrational signaling is a key to social interactions in species that live in contact with a substrate, whether it be a grassy lawn, a rippling stream or a tropical forest canopy. This ancient and widespread form of social exchange is also remarkably understudied. A frontier in animal behavior, it offers unparalleled opportunities for discovery and for addressing general questions in communication and social evolution. In addition to reviews of advances made in the study of several animal taxa, this volume also explores topics such as vibrational communication networks, the interaction of acoustic and vibrational communication, the history of the field, the evolution of signal production and reception and establishing a common vocabulary.
This high-interest nonfiction reader will help students gain science content knowledge while building their literacy skills and reading comprehension. This appropriately leveled text features hands-on, simple science experiments and full-color images and graphics. Fourth grade students will learn all about communication via sound waves through this engaging text that supports STEM education and is aligned to the Next Generation Science Standards.
Insect Hearing provides a broadly based view of the functions, mechanisms, and evolution of hearing in insects. With a single exception, the chapters focus on problems of hearing and their solutions, rather than being focused on particular taxa. The exception, hearing in Drosophila, is justified because, due to its ever growing toolbox of genetic and optical techniques, Drosophila is rapidly becoming one of the most important model systems in neurobiology, including the neurobiology of hearing. Auditory systems, whether insectan or vertebrate, must perform a number of basic tasks: capturing mechanical stimuli and transducing these into neural activity, representing the timing and frequency of sound signals, distinguishing between behaviorally relevant signals and other sounds and localizing sound sources. Studying how these are accomplished in insects offers a valuable comparative view that helps to reveal general principles of auditory function.
In order to communicate, animals send and receive signals that are subject to their particular anatomical, psychological, and environmental constraints. This SHAR volume discusses both the production and perception of acoustic signals. Chapters address the information that animals communicate, how the communication is developed and learned, and how communication systems have adapted and evolved within species. The book will give examples from a variety of species.