Thermal Properties of Solids at Room and Cryogenic Temperatures

Thermal Properties of Solids at Room and Cryogenic Temperatures

Author: Guglielmo Ventura

Publisher: Springer

Published: 2014-06-23

Total Pages: 220

ISBN-13: 940178969X

DOWNLOAD EBOOK

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review


Thermal Properties of Matter

Thermal Properties of Matter

Author: Joe Khachan

Publisher: Morgan & Claypool Publishers

Published: 2018-02-20

Total Pages: 63

ISBN-13: 1681745860

DOWNLOAD EBOOK

The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.


Thermal Conductivity

Thermal Conductivity

Author: Terry M. Tritt

Publisher: Springer Science & Business Media

Published: 2006-10-03

Total Pages: 306

ISBN-13: 038726017X

DOWNLOAD EBOOK

It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation researchers in the field of thermal conductivity. This book is a valuable resource for research groups and special topics courses (8-10 students), for 1st or 2nd year graduate level courses in Thermal Properties of Solids, special topics courses in Thermal Conductivity, Superconductors and Magnetic Materials, and to researchers in Thermoelectrics, Thermal Barrier Materials and Solid State Physics.


Thermophysical Properties of Materials

Thermophysical Properties of Materials

Author: G. Grimvall

Publisher: Elsevier

Published: 1999-09-22

Total Pages: 445

ISBN-13: 0080542867

DOWNLOAD EBOOK

This is a thoroughly revised version of the original book published in 1986. About half of the contents of the previous version remain essentially unchanged, and one quarter has been rewritten and updated. The rest consists of completely new and extended material. Recent research has focussed on new materials made through "molecular engineering", and computational materials science through ab initio electron structure calculations. Another trend is the ever growing interdisciplinary aspect of both basic and applied materials science. There is an obvious need for reviews that link well established results to the modern approaches. One purpose of this book is to provide such an overview in a specific field of materials science, namely thermophysical phenomena that are intimately connected with the lattice vibrations of solids. This includes, e.g., elastic properties and electrical and thermal transport. Furthermore, this book attempts to present the results in such a form that the reader can clearly see their domain of applicability, for instance if and how they depend on crystal structure, defects, applied pressure, crystal anisotropy etc. The level and presentation is such that the results can be immediately used in research. Graduate students in condensed matter physics, metallurgy, inorganic chemistry or geophysical materials will benefit from this book as will theoretical physicists and scientists in industrial research laboratories.


Springer Handbook of Materials Measurement Methods

Springer Handbook of Materials Measurement Methods

Author: Horst Czichos

Publisher: Springer Science & Business Media

Published: 2007-04-13

Total Pages: 1215

ISBN-13: 3540303006

DOWNLOAD EBOOK

This Handbook compiles advanced methods for materials measurement and characterization from the macroscopic to the nano-scale. Materials professionals need not only handbooks of materials data but clear guidelines and standards for how to measure the full spectrum of materials characteristics of new materials ans systems. Since materials science forms a bridge between the more traditonal fields of physics, engineering, and chemistry, unifying the varying perspectives and covering the full gamut of properties also serves a useful purpose. This handbook is the first dedicated to these practical and important considerations.


High Thermal Conductivity Materials

High Thermal Conductivity Materials

Author: Subhash L. Shinde

Publisher: Springer Science & Business Media

Published: 2006-01-31

Total Pages: 285

ISBN-13: 0387251006

DOWNLOAD EBOOK

The main objective of this book is to cover the basic understanding of thermal conduction mechanisms in various high thermal conductivity materials including diamond, cubic boron nitride, and also the latest material like carbon nanotubes. The book is intended as a good reference book for scientists and engineers involved in addressing thermal management issues in a broad spectrum of industries. Leading researchers from industry and academic institutions who are well known in their areas of expertise have contributed a chapter in the field of their interest.


Mechanical Properties of Ceramics

Mechanical Properties of Ceramics

Author: John B. Wachtman

Publisher: John Wiley & Sons

Published: 2009-08-13

Total Pages: 496

ISBN-13: 9780470451502

DOWNLOAD EBOOK

A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.


College Physics for AP® Courses

College Physics for AP® Courses

Author: Irna Lyublinskaya

Publisher:

Published: 2015-07-31

Total Pages: 1665

ISBN-13: 9781938168932

DOWNLOAD EBOOK

"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.