Results of recent research on the handling qualities of airplanes are reviewed. Among the subjects considered are dynamic longitudinal stability, transonic trim changes, pitch-up due to decreasing airspeed, dynamic lateral stability, aileron control, rudder control, and mechanical characteristics of power control systems.
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Adverse aircraft-pilot coupling (APC) events include a broad set of undesirable and sometimes hazardous phenomena that originate in anomalous interactions between pilots and aircraft. As civil and military aircraft technologies advance, interactions between pilots and aircraft are becoming more complex. Recent accidents and other incidents have been attributed to adverse APC in military aircraft. In addition, APC has been implicated in some civilian incidents. This book evaluates the current state of knowledge about adverse APC and processes that may be used to eliminate it from military and commercial aircraft. It was written for technical, government, and administrative decisionmakers and their technical and administrative support staffs; key technical managers in the aircraft manufacturing and operational industries; stability and control engineers; aircraft flight control system designers; research specialists in flight control, flying qualities, human factors; and technically knowledgeable lay readers.
As recently as the summer of 2001, many travelers were dreading air transportation because of extensive delays associated with undercapacity of the system. That all changed on 9/11, and demand for air transportation has not yet returned to peak levels. Most U.S. airlines continue to struggle for survival, and some have filed for bankruptcy. The situation makes it difficult to argue that strong action is urgently needed to avert a crisis of undercapacity in the air transportation system. This report assesses the visions and goals for U.S. civil aviation and technology goals for the year 2050.
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
This work bridges the gap between aeronautical principles and the practical world of aeroplanes by explaining aircraft design in terms of aerodynamics, propulsion, land and water operation, and structural arrangement. The book has been updated to include the main advances in aircraft design, propulsion and manufacture since it was first published in 1996.
Since the 1950s, a number of specialized books dealing with human factors has been published, but very little in aviation. Human Factors in Aviation is the first comprehensive review of contemporary applications of human factors research to aviation. A "must" for aviation professionals, equipment and systems designers, pilots, and managers--with emphasis on definition and solution of specific problems. General areas of human cognition and perception, systems theory, and safety are approached through specific topics in aviation--behavioral analysis of pilot performance, cockpit automation, advancing display and control technology, and training methods.
The X-31 Enhanced Fighter Maneuverability Demonstrator was unique among experimental aircraft. A joint effort of the United States and Germany, the X-31 was the only X-plane to be designed, manufactured, and flight tested as an international collaboration. It was also the only X-plane to support two separate test programs conducted years apart, one administered largely by NASA and the other by the U.S. Navy, as well as the first X-plane ever to perform at the Paris Air Show. Flying Beyond the Stall begins by describing the government agencies and private-sector industries involved in the X-31 program, the genesis of the supermaneuverability concept and its initial design breakthroughs, design and fabrication of two test airframes, preparation for the X-31's first flight, and the first flights of Ship #1 and Ship #2. Subsequent chapters discuss envelope expansion, handling qualities (especially at high angles of attack), and flight with vectored thrust. The book then turns to the program's move to NASA's Dryden Flight Research Center and actual flight test data. Additional tasking, such as helmet-mounted display evaluations, handling quality studies, aerodynamic parameter estimation, and a "tailless" study are also discussed.The book describes how, in the aftermath of a disastrous accident with Ship #1 in 1995, Ship #2 was prepared for its outstanding participation in the Paris Air Show. The aircraft was then shipped back to Edwards AFB and put into storage until the late 1990s, when it was refurbished for participation in the U. S. Navy's VECTOR program. The book ends with a comprehensive discussion of lessons learned and includes an Appendix containing detailed information.