In this paper, we define the disjunctive sum, difference and Cartesian product of two interval valued neutrosophic sets and study their basic properties.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Twelve papers on soft interval-valued neutrosophic rough sets, fuzzy neutosophic relation equations with geometric programming, rough neutrosophic multi-attribute decision-making, classes of neutrosophic crisp nearly open sets and possible application to GIS topology, neutrosophic probability in physics, and similar topics. Contributors: H. E. Khalid, K. Mondal, S. Pramanik, A. A. Salama, S. Broumi, F. Smarandache, F. Yuhua, M. Ali, M. Shabir, V. Patrascu, S. Ye, J. Fu, J. Ye, A. Hussain, and L. Vladareanu.
This article introduces the concept of neutrosophic bg -closed sets, neutrosophic bg -border of a set, neutrosophic bg -frontier of a set in neutrosophic topological spaces and the properties of these sets are discussed. The connection between neutrosophic bg -border of a set and neutrosophic bg -frontier of a set in neutrosophic topological spaces are established.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this disquisition we have scrutinize about the traits of generalized topological spaces using neutrosophic sets. Depending on the nature of neutrosophic sets over the generalized topological spaces, some of the features has been contemplated.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.