Nonlinear Partial Differential Equations

Nonlinear Partial Differential Equations

Author: Mi-Ho Giga

Publisher: Springer Science & Business Media

Published: 2010-05-30

Total Pages: 307

ISBN-13: 0817646515

DOWNLOAD EBOOK

This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Markov Processes and Differential Equations

Markov Processes and Differential Equations

Author: Mark I. Freidlin

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 155

ISBN-13: 3034891911

DOWNLOAD EBOOK

Probabilistic methods can be applied very successfully to a number of asymptotic problems for second-order linear and non-linear partial differential equations. Due to the close connection between the second order differential operators with a non-negative characteristic form on the one hand and Markov processes on the other, many problems in PDE's can be reformulated as problems for corresponding stochastic processes and vice versa. In the present book four classes of problems are considered: - the Dirichlet problem with a small parameter in higher derivatives for differential equations and systems - the averaging principle for stochastic processes and PDE's - homogenization in PDE's and in stochastic processes - wave front propagation for semilinear differential equations and systems. From the probabilistic point of view, the first two topics concern random perturbations of dynamical systems. The third topic, homog- enization, is a natural problem for stochastic processes as well as for PDE's. Wave fronts in semilinear PDE's are interesting examples of pattern formation in reaction-diffusion equations. The text presents new results in probability theory and their applica- tion to the above problems. Various examples help the reader to understand the effects. Prerequisites are knowledge in probability theory and in partial differential equations.


Some Asymptotic Problems in the Theory of Partial Differential Equations

Some Asymptotic Problems in the Theory of Partial Differential Equations

Author: Olga Oleinik

Publisher: Cambridge University Press

Published: 1996-02-23

Total Pages: 216

ISBN-13: 9780521480833

DOWNLOAD EBOOK

In this book, Professor Oleinik highlights her work in the area of partial differential equations. The book is divided into two parts: the first is devoted to the study of the asymptotic behavior at infinity of solutions of a class of nonlinear second order elliptic equations in unbounded and, in particular, cylindrical domains. The second contains the most recent results of the author in the theory of homogenization of partial differential equations and is concerned with questions about partially perforated domains and of solutions with rapidly alternating types of boundary conditions. Many of the results here have not appeared in book form before, and it sheds new light on the subject, raising many new ideas and open problems.


Partial Differential Equations V

Partial Differential Equations V

Author: M.V. Fedoryuk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 248

ISBN-13: 3642584233

DOWNLOAD EBOOK

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.


Asymptotics of Elliptic and Parabolic PDEs

Asymptotics of Elliptic and Parabolic PDEs

Author: David Holcman

Publisher: Springer

Published: 2018-05-25

Total Pages: 456

ISBN-13: 3319768956

DOWNLOAD EBOOK

This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world problems from first principles.


Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Author: Lamberto Cesari

Publisher: Springer

Published: 2013-11-09

Total Pages: 278

ISBN-13: 3662403684

DOWNLOAD EBOOK

In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.


Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

Publisher: Gulf Professional Publishing

Published: 2005-11-30

Total Pages: 684

ISBN-13: 9780444520487

DOWNLOAD EBOOK

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous, and in depth surveys on the most important aspects of the present theory.


Using the Mathematics Literature

Using the Mathematics Literature

Author: Kristine K. Fowler

Publisher: CRC Press

Published: 2004-05-25

Total Pages: 412

ISBN-13: 9780824750350

DOWNLOAD EBOOK

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.