Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems

Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems

Author: Alexander Morgan

Publisher: SIAM

Published: 2009-01-01

Total Pages: 331

ISBN-13: 0898719038

DOWNLOAD EBOOK

This book introduces the numerical technique of polynomial continuation, which is used to compute solutions to systems of polynomial equations. Originally published in 1987, it remains a useful starting point for the reader interested in learning how to solve practical problems without advanced mathematics. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems is easy to understand, requiring only a knowledge of undergraduate-level calculus and simple computer programming. The book is also practical; it includes descriptions of various industrial-strength engineering applications and offers Fortran code for polynomial solvers on an associated Web page. It provides a resource for high-school and undergraduate mathematics projects. Audience: accessible to readers with limited mathematical backgrounds. It is appropriate for undergraduate mechanical engineering courses in which robotics and mechanisms applications are studied.


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates

Publisher: SIAM

Published: 2013-11-08

Total Pages: 372

ISBN-13: 1611972701

DOWNLOAD EBOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.


The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

Author: Andrew John Sommese

Publisher: World Scientific

Published: 2005

Total Pages: 425

ISBN-13: 9812561846

DOWNLOAD EBOOK

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.


Solving Polynomial Equations

Solving Polynomial Equations

Author: Alicia Dickenstein

Publisher: Springer Science & Business Media

Published: 2005-04-27

Total Pages: 433

ISBN-13: 3540243267

DOWNLOAD EBOOK

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.


The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

Author: Andrew John Sommese

Publisher: World Scientific

Published: 2005

Total Pages: 426

ISBN-13: 9812561846

DOWNLOAD EBOOK

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.


Applications of Polynomial Systems

Applications of Polynomial Systems

Author: David A. Cox

Publisher: American Mathematical Soc.

Published: 2020-03-02

Total Pages: 250

ISBN-13: 1470451379

DOWNLOAD EBOOK

Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.


Introduction to Numerical Continuation Methods

Introduction to Numerical Continuation Methods

Author: Eugene L. Allgower

Publisher: SIAM

Published: 2003-01-01

Total Pages: 413

ISBN-13: 9780898719154

DOWNLOAD EBOOK

Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates

Publisher: SIAM

Published: 2013-11-08

Total Pages: 372

ISBN-13: 1611972698

DOWNLOAD EBOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.


Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems

Author: Yousef Saad

Publisher: SIAM

Published: 2011-05-26

Total Pages: 285

ISBN-13: 1611970725

DOWNLOAD EBOOK

This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method and automatic multilevel substructuring.


Convex Analysis and Variational Problems

Convex Analysis and Variational Problems

Author: Ivar Ekeland

Publisher: SIAM

Published: 1999-12-01

Total Pages: 405

ISBN-13: 0898714508

DOWNLOAD EBOOK

No one working in duality should be without a copy of Convex Analysis and Variational Problems. This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.