Solving Numerical PDEs: Problems, Applications, Exercises

Solving Numerical PDEs: Problems, Applications, Exercises

Author: Luca Formaggia

Publisher: Springer Science & Business Media

Published: 2012-04-05

Total Pages: 439

ISBN-13: 8847024129

DOWNLOAD EBOOK

This book stems from the long standing teaching experience of the authors in the courses on Numerical Methods in Engineering and Numerical Methods for Partial Differential Equations given to undergraduate and graduate students of Politecnico di Milano (Italy), EPFL Lausanne (Switzerland), University of Bergamo (Italy) and Emory University (Atlanta, USA). It aims at introducing students to the numerical approximation of Partial Differential Equations (PDEs). One of the difficulties of this subject is to identify the right trade-off between theoretical concepts and their actual use in practice. With this collection of examples and exercises we try to address this issue by illustrating "academic" examples which focus on basic concepts of Numerical Analysis as well as problems derived from practical application which the student is encouraged to formalize in terms of PDEs, analyze and solve. The latter examples are derived from the experience of the authors in research project developed in collaboration with scientists of different fields (biology, medicine, etc.) and industry. We wanted this book to be useful both to readers more interested in the theoretical aspects and those more concerned with the numerical implementation.


Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method

Author: Claes Johnson

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 290

ISBN-13: 0486131599

DOWNLOAD EBOOK

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.


Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Author: Peter Knabner

Publisher: Springer Science & Business Media

Published: 2003-06-26

Total Pages: 437

ISBN-13: 038795449X

DOWNLOAD EBOOK

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.


Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations

Author: S. H, Lui

Publisher: John Wiley & Sons

Published: 2012-01-10

Total Pages: 506

ISBN-13: 1118111117

DOWNLOAD EBOOK

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.


Solving PDEs in C++

Solving PDEs in C++

Author: Yair Shapira

Publisher: SIAM

Published: 2012-06-07

Total Pages: 775

ISBN-13: 1611972167

DOWNLOAD EBOOK

In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Partial Differential Equations

Partial Differential Equations

Author: Mark S. Gockenbach

Publisher: SIAM

Published: 2010-12-02

Total Pages: 665

ISBN-13: 0898719356

DOWNLOAD EBOOK

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.


Partial Differential Equations of Classical Structural Members

Partial Differential Equations of Classical Structural Members

Author: Andreas Öchsner

Publisher: Springer Nature

Published: 2019-11-07

Total Pages: 96

ISBN-13: 3030353117

DOWNLOAD EBOOK

The derivation and understanding of Partial Differential Equations relies heavily on the fundamental knowledge of the first years of scientific education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills. Thus, it is a challenging topic for prospective engineers and scientists. This volume provides a compact overview on the classical Partial Differential Equations of structural members in mechanics. It offers a formal way to uniformly describe these equations. All derivations follow a common approach: the three fundamental equations of continuum mechanics, i.e., the kinematics equation, the constitutive equation, and the equilibrium equation, are combined to construct the partial differential equations.


Partial Differential Equations in Action

Partial Differential Equations in Action

Author: Sandro Salsa

Publisher: Springer

Published: 2015-05-30

Total Pages: 433

ISBN-13: 3319154168

DOWNLOAD EBOOK

This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.


Parallel Processing and Applied Mathematics

Parallel Processing and Applied Mathematics

Author: Roman Wyrzykowski

Publisher: Springer

Published: 2016-04-05

Total Pages: 622

ISBN-13: 3319321498

DOWNLOAD EBOOK

This two-volume set LNCS 9573 and LNCS 9574 constitutes the refereed proceedings of the 11th International Conference of Parallel Processing and Applied Mathematics, PPAM 2015, held in Krakow, Poland, in September 2015.The 111 revised full papers presented in both volumes were carefully reviewed and selected from 196 submissions. The focus of PPAM 2015 was on models, algorithms, and software tools which facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications, including big data problems.