Solving Free-boundary Problems with Applications in Finance

Solving Free-boundary Problems with Applications in Finance

Author: Kumar Muthuraman

Publisher: Now Publishers Inc

Published: 2008

Total Pages: 94

ISBN-13: 1601981686

DOWNLOAD EBOOK

Outlines and explains a recent computational method that solves free boundary problems by reducing them into a sequence of fixed boundary problems which are relatively easy to solve numerically.


Free Boundary Problems

Free Boundary Problems

Author: Isabel Narra Figueiredo

Publisher: Springer Science & Business Media

Published: 2007-01-11

Total Pages: 461

ISBN-13: 3764377194

DOWNLOAD EBOOK

This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.


Optimal Stopping and Free-Boundary Problems

Optimal Stopping and Free-Boundary Problems

Author: Goran Peskir

Publisher: Springer Science & Business Media

Published: 2006-11-10

Total Pages: 515

ISBN-13: 3764373903

DOWNLOAD EBOOK

This book discloses a fascinating connection between optimal stopping problems in probability and free-boundary problems. It focuses on key examples and the theory of optimal stopping is exposed at its basic principles in discrete and continuous time covering martingale and Markovian methods. Methods of solution explained range from change of time, space, and measure, to more recent ones such as local time-space calculus and nonlinear integral equations. A chapter on stochastic processes makes the material more accessible. The book will appeal to those wishing to master stochastic calculus via fundamental examples. Areas of application include financial mathematics, financial engineering, and mathematical statistics.


Topics in Numerical Methods for Finance

Topics in Numerical Methods for Finance

Author: Mark Cummins

Publisher: Springer Science & Business Media

Published: 2012-07-15

Total Pages: 213

ISBN-13: 1461434335

DOWNLOAD EBOOK

Presenting state-of-the-art methods in the area, the book begins with a presentation of weak discrete time approximations of jump-diffusion stochastic differential equations for derivatives pricing and risk measurement. Using a moving least squares reconstruction, a numerical approach is then developed that allows for the construction of arbitrage-free surfaces. Free boundary problems are considered next, with particular focus on stochastic impulse control problems that arise when the cost of control includes a fixed cost, common in financial applications. The text proceeds with the development of a fear index based on equity option surfaces, allowing for the measurement of overall fear levels in the market. The problem of American option pricing is considered next, applying simulation methods combined with regression techniques and discussing convergence properties. Changing focus to integral transform methods, a variety of option pricing problems are considered. The COS method is practically applied for the pricing of options under uncertain volatility, a method developed by the authors that relies on the dynamic programming principle and Fourier cosine series expansions. Efficient approximation methods are next developed for the application of the fast Fourier transform for option pricing under multifactor affine models with stochastic volatility and jumps. Following this, fast and accurate pricing techniques are showcased for the pricing of credit derivative contracts with discrete monitoring based on the Wiener-Hopf factorisation. With an energy theme, a recombining pentanomial lattice is developed for the pricing of gas swing contracts under regime switching dynamics. The book concludes with a linear and nonlinear review of the arbitrage-free parity theory for the CDS and bond markets.


Time-discrete Method Of Lines For Options And Bonds, The: A Pde Approach

Time-discrete Method Of Lines For Options And Bonds, The: A Pde Approach

Author: Gunter H Meyer

Publisher: World Scientific

Published: 2014-11-27

Total Pages: 286

ISBN-13: 9814619698

DOWNLOAD EBOOK

Few financial mathematical books have discussed mathematically acceptable boundary conditions for the degenerate diffusion equations in finance. In The Time-Discrete Method of Lines for Options and Bonds, Gunter H Meyer examines PDE models for financial derivatives and shows where the Fichera theory requires the pricing equation at degenerate boundary points, and what modifications of it lead to acceptable tangential boundary conditions at non-degenerate points on computational boundaries when no financial data are available.Extensive numerical simulations are carried out with the method of lines to examine the influence of the finite computational domain and of the chosen boundary conditions on option and bond prices in one and two dimensions, reflecting multiple assets, stochastic volatility, jump diffusion and uncertain parameters. Special emphasis is given to early exercise boundaries, prices and their derivatives near expiration. Detailed graphs and tables are included which may serve as benchmark data for solutions found with competing numerical methods.


Regularity of Free Boundaries in Obstacle-Type Problems

Regularity of Free Boundaries in Obstacle-Type Problems

Author: Arshak Petrosyan

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 233

ISBN-13: 0821887947

DOWNLOAD EBOOK

The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.


Applied Computational Economics and Finance

Applied Computational Economics and Finance

Author: Mario J. Miranda

Publisher: MIT Press

Published: 2004-08-20

Total Pages: 529

ISBN-13: 0262291754

DOWNLOAD EBOOK

This book presents a variety of computational methods used to solve dynamic problems in economics and finance. It emphasizes practical numerical methods rather than mathematical proofs and focuses on techniques that apply directly to economic analyses. The examples are drawn from a wide range of subspecialties of economics and finance, with particular emphasis on problems in agricultural and resource economics, macroeconomics, and finance. The book also provides an extensive Web-site library of computer utilities and demonstration programs. The book is divided into two parts. The first part develops basic numerical methods, including linear and nonlinear equation methods, complementarity methods, finite-dimensional optimization, numerical integration and differentiation, and function approximation. The second part presents methods for solving dynamic stochastic models in economics and finance, including dynamic programming, rational expectations, and arbitrage pricing models in discrete and continuous time. The book uses MATLAB to illustrate the algorithms and includes a utilities toolbox to help readers develop their own computational economics applications.


Free Boundary Problems

Free Boundary Problems

Author: Darya Apushkinskaya

Publisher: Springer

Published: 2018-09-20

Total Pages: 156

ISBN-13: 3319970798

DOWNLOAD EBOOK

This book is concerned with several elliptic and parabolic obstacle-type problems with a focus on the cases where the free and fixed boundaries meet. The results presented complement those found in existing books in the subject, which mainly treat regularity properties away from the fixed boundary. The topics include optimal regularity, analysis of global solutions, tangential touch of the free and fixed boundaries, as well as Lipschitz- and $C^1$-regularity of the free boundary. Special attention is given to local versions of various monotonicity formulas. The intended audience includes research mathematicians and advanced graduate students interested in problems with free boundaries.


Inspired by Finance

Inspired by Finance

Author: Yuri Kabanov

Publisher: Springer Science & Business Media

Published: 2013-10-23

Total Pages: 553

ISBN-13: 3319020692

DOWNLOAD EBOOK

The present volume is dedicated to Marek Musiela, an eminent scholar and practitioner who is perhaps best-known for his important contributions to problems of derivative pricing, theory of term structure of interest rates, theory of defaultable securities and other topics in modern mathematical finance. It includes 25 research papers by 47 authors, established experts and newcomers alike, that cover the whole range of the "hot" topics in the discipline. The contributed articles not only give a clear picture about what is going on in this rapidly developing field of knowledge but provide methods ready for practical implementation. They also open new prospects for further studies in risk management, portfolio optimization and financial engineering.