This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
'The third edition of this book is designed to carefully and coherently introduce fractional calculus to physicists, by applying the ideas to two distinct applications: classical problems and multi-particle quantum problems. There remain many open questions and the field remains an active area of research. Dr Herrmann’s book is an excellent introduction to this field of study.'Contemporary PhysicsThe book presents a concise introduction to the basic methods and strategies in fractional calculus which enables the reader to catch up with the state-of-the-art in this field and to participate and contribute in the development of this exciting research area.This book is devoted to the application of fractional calculus on physical problems. The fractional concept is applied to subjects in classical mechanics, image processing, folded potentials in cluster physics, infrared spectroscopy, group theory, quantum mechanics, nuclear physics, hadron spectroscopy up to quantum field theory and will surprise the reader with new intriguing insights.This new, extended edition includes additional chapters about numerical solution of the fractional Schrödinger equation, self-similarity and the geometric interpretation of non-isotropic fractional differential operators. Motivated by the positive response, new exercises with elaborated solutions are added, which significantly support a deeper understanding of the general aspects of the theory.Besides students as well as researchers in this field, this book will also be useful as a supporting medium for teachers teaching courses devoted to this subject.
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
This book is devoted to the existence and uniqueness results for various classes of problems with periodic conditions. All of the problems in this book deal with fractional differential equations and some fractional derivatives such as the Riemann-Liouville, Caputo and Hilfer fractional derivatives. Classical fixed point theorems as well as the coincidence degree theory of Mawhin are employed as tools.
This is a modified version of Module 10 of the Centre for Mathematical and Statistical Sciences (CMSS). CMSS modules are notes prepared on various topics with many examples from real-life situations and exercises so that the subject matter becomes interesting to students. These modules are used for undergraduate level courses and graduate level training in various topics at CMSS. Aside from Module 8, these modules were developed by Dr A M Mathai, Director of CMSS and Emeritus Professor of Mathematics and Statistics, McGill University, Canada. Module 8 is based on the lecture notes of Professor W J Anderson of McGill University, developed for his undergraduate course (Mathematics 447). Professor Dr Hans J Haubold has been a research collaborator of Dr A M Mathais since 1984, mainly in the areas of astrophysics, special functions and statistical distribution theory. He is also a lifetime member of CMSS and a Professor at CMSS. A large number of papers have been published jointly in these areas since 1984. The following monographs and books have been brought out in conjunction with this joint research: Modern Problems in Nuclear and Neutrino Astrophysics (A M Mathai and H J Haubold, 1988, Akademie-Verlag, Berlin); Special Functions for Applied Scientists (A MMathai and H J Haubold, 2008, Springer, New York); and The H-Function: Theory and Applications (A M Mathai, R K Saxena and H J Haubold, 2010, Springer, New York). These CMSS modules are printed at CMSS Press and published by CMSS. Copies are made available to students free of charge, and to researchers and others at production cost. For the preparation of the initial drafts of all these modules, financial assistance was made available from the Department of Science and Technology, the Government of India (DST), New Delhi under project number SR/S4/MS:287/05. Hence, the authors would like to express their thanks and gratitude to DST, the Government of India, for its financial assistance.
This is an introductory-level text on fractional calculus and fractional differential equations. Targeted to graduate students of mathematics and researchers, it contains several new definitions of fractional integrals and fractional derivatives. With interesting applications of the subject in several areas of physical sciences, life sciences, engineering, and technology, the book helps the students understand the importance and developments of this topic. The book is enriched with a list of useful references to published literature, and the presentation of the book is entirely new and easily comprehensible to the students. Some of the topics are refined, and new examples are included to supplement theories to help students understand the concepts easily and clearly.
General Fractional Derivatives: Theory, Methods and Applications provides knowledge of the special functions with respect to another function, and the integro-differential operators where the integrals are of the convolution type and exist the singular, weakly singular and nonsingular kernels, which exhibit the fractional derivatives, fractional integrals, general fractional derivatives, and general fractional integrals of the constant and variable order without and with respect to another function due to the appearance of the power-law and complex herbivores to figure out the modern developments in theoretical and applied science. Features: Give some new results for fractional calculus of constant and variable orders. Discuss some new definitions for fractional calculus with respect to another function. Provide definitions for general fractional calculus of constant and variable orders. Report new results of general fractional calculus with respect to another function. Propose news special functions with respect to another function and their applications. Present new models for the anomalous relaxation and rheological behaviors. This book serves as a reference book and textbook for scientists and engineers in the fields of mathematics, physics, chemistry and engineering, senior undergraduate and graduate students. Dr. Xiao-Jun Yang is a full professor of Applied Mathematics and Mechanics, at China University of Mining and Technology, China. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Modelling and Analysis, International Journal of Numerical Methods for Heat & Fluid Flow, and Thermal Science.
This book explores fractional differential equations with a fixed point approach. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations. All of the problems in the book also deal with some form of of the well-known Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. Classical and new fixed point theorems, associated with the measure of noncompactness in Banach spaces as well as several generalizations of the Gronwall's lemma, are employed as tools. The book is based on many years of research in this area, and provides suggestions for further study as well. The authors have included illustrations in order to support the readers’ understanding of the concepts presented. Includes illustrations in order to support readers understanding of the presented concepts · Approaches the topic of fractional differential equations while employing fixed point theorems as tools · Presents novel results, which build upon previous literature and many years of research by the authors
Zusammenfassung: Fractional calculus and its applications are fascinating research areas in many engineering disciplines. This book is a comprehensive collection of research from the author's group, which is one of the most active in the fractional calculus community worldwide and is the birthplace of one of the four MATLAB toolboxes in fractional calculus, the FOTF Toolbox. The book presents high-precision solution algorithms for a variety of fractional-order differential equations, including nonlinear, delay, and boundary value equations. Currently, there are no other universal solvers available for the latter two types of equations. Through this book, readers can systematically study the mathematics and solution methods in the field of fractional calculus and apply these concepts to different engineering fields, particularly control systems engineering This book is a translation of an original Chinese edition. The translation of some chapters was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done