An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2013-06-06

Total Pages: 579

ISBN-13: 1118626230

DOWNLOAD EBOOK

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.


Solutions Manual to accompany An Introduction to Numerical Methods and Analysis

Solutions Manual to accompany An Introduction to Numerical Methods and Analysis

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2021-09-15

Total Pages: 308

ISBN-13: 1119604532

DOWNLOAD EBOOK

A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Third Edition An Introduction to Numerical Methods and Analysis helps students gain a solid understanding of a wide range of numerical approximation methods for solving problems of mathematical analysis. Designed for entry-level courses on the subject, this popular textbook maximizes teaching flexibility by first covering basic topics before gradually moving to more advanced material in each chapter and section. Throughout the text, students are provided clear and accessible guidance on a wide range of numerical methods and analysis techniques, including root-finding, numerical integration, interpolation, solution of systems of equations, and many others. This fully revised third edition contains new sections on higher-order difference methods, the bisection and inertia method for computing eigenvalues of a symmetric matrix, a completely re-written section on different methods for Poisson equations, and spectral methods for higher-dimensional problems. New problem sets—ranging in difficulty from simple computations to challenging derivations and proofs—are complemented by computer programming exercises, illustrative examples, and sample code. This acclaimed textbook: Explains how to both construct and evaluate approximations for accuracy and performance Covers both elementary concepts and tools and higher-level methods and solutions Features new and updated material reflecting new trends and applications in the field Contains an introduction to key concepts, a calculus review, an updated primer on computer arithmetic, a brief history of scientific computing, a survey of computer languages and software, and a revised literature review Includes an appendix of proofs of selected theorems and author-hosted companion website with additional exercises, application models, and supplemental resources


An Introduction to Numerical Methods and Analysis, Solutions Manual

An Introduction to Numerical Methods and Analysis, Solutions Manual

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2014-08-28

Total Pages: 264

ISBN-13: 111855213X

DOWNLOAD EBOOK

A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and the Second Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB An appendix that contains proofs of various theorems and other material


Fundamentals of Matrix Analysis with Applications

Fundamentals of Matrix Analysis with Applications

Author: Edward Barry Saff

Publisher: John Wiley & Sons

Published: 2015-10-12

Total Pages: 407

ISBN-13: 1118953657

DOWNLOAD EBOOK

An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.


Solutions Manual to Accompany Beginning Partial Differential Equations

Solutions Manual to Accompany Beginning Partial Differential Equations

Author: Peter V. O'Neil

Publisher: John Wiley & Sons

Published: 2014-10-13

Total Pages: 127

ISBN-13: 1118630092

DOWNLOAD EBOOK

Solutions Manual to Accompany Beginning Partial Differential Equations, 3rd Edition Featuring a challenging, yet accessible, introduction to partial differential equations, Beginning Partial Differential Equations provides a solid introduction to partial differential equations, particularly methods of solution based on characteristics, separation of variables, as well as Fourier series, integrals, and transforms. Thoroughly updated with novel applications, such as Poe's pendulum and Kepler's problem in astronomy, this third edition is updated to include the latest version of Maples, which is integrated throughout the text. New topical coverage includes novel applications, such as Poe's pendulum and Kepler's problem in astronomy.


Principles of Mathematical Analysis

Principles of Mathematical Analysis

Author: Walter Rudin

Publisher: McGraw-Hill Publishing Company

Published: 1976

Total Pages: 342

ISBN-13: 9780070856134

DOWNLOAD EBOOK

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.


Introduction to Integral Equations with Applications

Introduction to Integral Equations with Applications

Author: Abdul J. Jerri

Publisher: John Wiley & Sons

Published: 1999-09-03

Total Pages: 458

ISBN-13: 9780471317340

DOWNLOAD EBOOK

From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliquées. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.


A Friendly Introduction to Numerical Analysis

A Friendly Introduction to Numerical Analysis

Author: Brian Bradie

Publisher: Pearson

Published: 2006

Total Pages: 0

ISBN-13: 9780130130549

DOWNLOAD EBOOK

An introduction to the fundamental concepts and techniques of numerical analysis and numerical methods. Application problems drawn from many different fields aim to prepare students to use the techniques covered to solve a variety of practical problems.


Introduction to Ordinary Differential Equations

Introduction to Ordinary Differential Equations

Author: Albert L. Rabenstein

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 444

ISBN-13: 1483226220

DOWNLOAD EBOOK

Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.


Solutions Manual to accompany Nonlinear Programming

Solutions Manual to accompany Nonlinear Programming

Author: Mokhtar S. Bazaraa

Publisher: John Wiley & Sons

Published: 2014-08-22

Total Pages: 130

ISBN-13: 1118762320

DOWNLOAD EBOOK

As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts and methods discussed.