Computational Differential Equations

Computational Differential Equations

Author: Kenneth Eriksson

Publisher: Cambridge University Press

Published: 1996-09-05

Total Pages: 558

ISBN-13: 9780521567381

DOWNLOAD EBOOK

This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Approximation of Continuously Differentiable Functions

Approximation of Continuously Differentiable Functions

Author: J.G. Llavona

Publisher: Elsevier

Published: 1986-11-01

Total Pages: 257

ISBN-13: 0080872417

DOWNLOAD EBOOK

This self-contained book brings together the important results of a rapidly growing area.As a starting point it presents the classic results of the theory. The book covers such results as: the extension of Wells' theorem and Aron's theorem for the fine topology of order m; extension of Bernstein's and Weierstrass' theorems for infinite dimensional Banach spaces; extension of Nachbin's and Whitney's theorem for infinite dimensional Banach spaces; automatic continuity of homomorphisms in algebras of continuously differentiable functions, etc.


Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson

Publisher: John Wiley & Sons

Published: 2011-10-24

Total Pages: 272

ISBN-13: 1118164520

DOWNLOAD EBOOK

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Handbook of Differential Equations

Handbook of Differential Equations

Author: Daniel Zwillinger

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 808

ISBN-13: 1483263967

DOWNLOAD EBOOK

Handbook of Differential Equations, Second Edition is a handy reference to many popular techniques for solving and approximating differential equations, including numerical methods and exact and approximate analytical methods. Topics covered range from transformations and constant coefficient linear equations to Picard iteration, along with conformal mappings and inverse scattering. Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.


Numerical Methods and Modeling for Chemical Engineers

Numerical Methods and Modeling for Chemical Engineers

Author: Mark E. Davis

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 276

ISBN-13: 0486493830

DOWNLOAD EBOOK

"Geared toward advanced undergraduates or graduate students of chemical engineering studying applied mathematics, this text introduces the quantitative treatment of differential equations arising from modeling physical phenomena in chemical engineering. Coverage includes topics such as ODE-IVPs, placing emphasis on numerical methods and modeling implemented in commercial mathematical software available in 1985"--


Artificial Neural Networks for Engineers and Scientists

Artificial Neural Networks for Engineers and Scientists

Author: S. Chakraverty

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 157

ISBN-13: 1351651315

DOWNLOAD EBOOK

Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.