Solid-Gaseous Biofuels Production

Solid-Gaseous Biofuels Production

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2024-08-27

Total Pages: 596

ISBN-13: 139420440X

DOWNLOAD EBOOK

Written by a team of industry experts and edited by one of the most prolific and well-respected engineering authors in the industry, this exciting new volume covers the latest processes, equipment, and applications for clean biofuel production. With renewable and alternative energy sources becoming more and more important, and the growth in percentage of the overall energy used, biofuels production is more important than ever and is a huge part of taking up the slack in the transition from fossil fuels. This volume covers many of the newest state-of-the art processes, trends, and changes in the industry, combining information from many disciplines to deliver have-to-have solutions for the engineer or scientist’s daily problems. Whether in the plant or in the classroom, this exciting new volume is a must-have for any engineer, scientist, student, or other industry professional working in biofuel production. Audience Engineers, scientists, faculty and students, and industry professionals working in the biofuel industry.


Liquid, Gaseous and Solid Biofuels - Conversion Techniques

Liquid, Gaseous and Solid Biofuels - Conversion Techniques

Author: Azat Solak

Publisher:

Published: 2016-08-01

Total Pages: 313

ISBN-13: 9781681175096

DOWNLOAD EBOOK

Liquid, Gaseous and Solid Biofuels - Conversion Techniques reviews of up-todate conversion techniques for biofuels. It emphases on the cutting-edge development for the production of liquid and gaseous biofuels that should be useful to the chemical scientists and technologists. A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Bioenergy is energy derived from biofuels. Biofuels may also be derived from forestry, agricultural or fishery products or municipal wastes, as well as from agro-industry, food industry and food service by-products and wastes. Generally, bioenergy covers roughly 10% of the total world energy demand. Traditional unprocessed biomass such as fuelwood, charcoal and animal dung accounts for most of this and represents the main source of energy for a large number of people in developing countries who use it mainly for cooking and heating. More advanced and efficient conversion technologies now allow the extraction of biofuels from materials such as wood, crops and waste material. Bioenergy consists of solid, liquid, or gaseous fuels. Liquid fuels can be used directly in the existing road, railroad, and aviation transportation network stock, as well as in engine and turbine electrical power generators. Solid and gaseous fuels can be used for the production of electrical power from purposedesigned direct or indirect turbine-equipped power plants. Around 85% of the liquid biofuels are currently produced in the form of bioethanol with the main producers being Brazil and the USA. Biodiesel production is essentially concentrated in the European Union. Commercial biomass conversion technologies are improving, with respect to efficiency of resource use, and environmental impact mitigation and economic performance. This book should be of highly immense valuable tool for researchers, academicians and industrialists.


Biomass as Raw Material for the Production of Biofuels and Chemicals

Biomass as Raw Material for the Production of Biofuels and Chemicals

Author: Waldemar Wójcik

Publisher: Routledge

Published: 2021-11-01

Total Pages: 240

ISBN-13: 1000399575

DOWNLOAD EBOOK

For the power industry, biomass is just a modern name for the ancient material of plant origin that was converted into energy in the simple technology of burning. This book discusses biomass as a raw material for the production of liquid or gaseous biofuels and valuable chemicals. Such biomass processing should be beneficial from both economic and environmental points of view. Classic technologies of biogas production are still being improved, but they always generate waste that differs in terms of chemical parameters, depending on the feedstock digested. These parameters dictate the manner of their final managing. Various biotechnologies allow the use of the biomass of hydrobionts, such as cyanobacteria as a raw substance for obtaining different products, e.g. hyaluronic acid, biopolymers, fertilizers, or even drugs. Animal fats or algae can be used to produce biodiesel which in turn is used in environmentally friendly urban transport. Even municipal solid waste can be a source of useful biomass. The authors show how its volume and composition can be predicted, by which form of processing it can be converted into valuable products, as well as in which ways its negative environmental impact can be limited.


Bioenergy

Bioenergy

Author: Anju Dahiya

Publisher: Academic Press

Published: 2020-04-09

Total Pages: 892

ISBN-13: 0128154985

DOWNLOAD EBOOK

Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition presents a complete overview of the bioenergy value chain, from feedstock to end products. It examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources. Divided into seven parts, bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life-cycle analysis, energy return on invested, integrated sustainability assessments, conversions technologies, biofuels economics, business, and policy. In addition, contributions from leading industry professionals and academics, augmented by related service-learning case studies and quizzes, provide readers with a comprehensive resource that connect theory to real-world implementation.Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition provides engineers, researchers, undergraduate and graduate students, and business professionals in the bioenergy field with valuable, practical information that can be applied to implementing renewable energy projects, choosing among competing feedstocks, technologies, and products. It also serves as a basic resource for civic leaders, economic development professionals, farmers, investors, fleet managers, and reporters interested in an organized introduction to the language, feedstocks, technologies, and products in the biobased renewable energy world. - Includes current and renewed subject matter, project case studies from real world, and topic-specific sections on the impacts of biomass use for energy production from all sorts of biomass feedstocks including organic waste of all kinds - Provides a comprehensive overview and in-depth technical information of all possible bioenergy resources: solid (wood energy, grass energy, waste, and other biomass), liquid (biodiesel, algae biofuel, ethanol, waste to oils, etc.), and gaseous/electric (biogas, syngas, biopower, RNG), and cutting-edge topics such as advanced fuels - Integrates current state of art coverage on feedstocks, cost-effective conversion processes, biofuels economic analysis, environmental policy, and triple bottom line - Features quizzes for each section derived from the implementation of actual hands-on biofuel projects as part of service learning


Advanced Biofuel Technologies

Advanced Biofuel Technologies

Author: Deepak K. Tuli

Publisher: Elsevier

Published: 2021-12-08

Total Pages: 596

ISBN-13: 0323884288

DOWNLOAD EBOOK

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. - Covers technologies and processes of different types of biofuel production - Outlines a selection of different types of renewable feedstocks for biofuel production - Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel - Includes regulations, policies and lifecycle and techno-economic assessments


Microalgae Cultivation for Biofuels Production

Microalgae Cultivation for Biofuels Production

Author: Abu Yousuf

Publisher: Academic Press

Published: 2019-11-23

Total Pages: 384

ISBN-13: 0128175370

DOWNLOAD EBOOK

Microalgae Cultivation for Biofuels Production explores the technological opportunities and challenges involved in producing economically competitive algal-derived biofuel. The book discusses efficient methods for cultivation, improvement of harvesting and lipid extraction techniques, optimization of conversion/production processes of fuels and co-products, the integration of microalgae biorefineries to several industries, environmental resilience by microalgae, and a techno-economic and lifecycle analysis of the production chain to gain maximum benefits from microalgae biorefineries. - Provides an overview of the whole production chain of microalgal biofuels and other bioproducts - Presents an analysis of the economic and sustainability aspects of the production chain - Examines the integration of microalgae biorefineries into several industries


Liquid Biofuels

Liquid Biofuels

Author: Krushna Prasad Shadangi

Publisher: John Wiley & Sons

Published: 2021-06-29

Total Pages: 754

ISBN-13: 1119791987

DOWNLOAD EBOOK

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.


Biofuels

Biofuels

Author: Alan H. Scragg

Publisher: CABI

Published: 2009

Total Pages: 251

ISBN-13: 1845937279

DOWNLOAD EBOOK

Explores the production of biofuels as alternatives to fossil fuels, focusing on the technological issues. This textbook considers each type of biofuel in production, covering the benefits and problems with production and use and the potential for biological material to provide sufficient energy for the world's population.


Biofuels and Sustainability

Biofuels and Sustainability

Author: Kazuhiko Takeuchi

Publisher: Springer

Published: 2018-07-13

Total Pages: 261

ISBN-13: 4431548955

DOWNLOAD EBOOK

This open access book presents a comprehensive analysis of biofuel use strategies from an interdisciplinary perspective using sustainability science. This interdisciplinary perspective (social science-natural science) means that the strategies and policy options proposed will have significant impacts on the economy and society alike. Biofuels are expected to contribute to reducing greenhouse gas emissions, revitalizing economies in agricultural communities and alleviating poverty. However, despite these anticipated benefits, international organizations such as the FAO, OECD and UN have published reports expressing concerns that biofuel promotion may lead to deforestation, water pollution and water shortages. The impacts of biofuel use are extensive, cross-sectoral and complex, and as such, comprehensive analyses are required in order to assess the extent to which biofuels can contribute to sustainable societies. Applying interdisciplinary sustainability science concepts and methodologies, the book helps to enhance the establishment of a sustainable society as well as the development of appropriate responses to a global need for urgent action on current issues related to biofuels.


Handbook of Research on Bioenergy and Biomaterials

Handbook of Research on Bioenergy and Biomaterials

Author: Leopoldo Javier Ríos González

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 736

ISBN-13: 1000210731

DOWNLOAD EBOOK

The handbook provides an understanding of consolidated processing and biorefinery systems for the production of bio-based chemicals and value-added bioproducts from renewable sources. The chapters look at a variety of bioenergy technological advances and improvements in the energy and materials sectors that aim to lower our dependence of fossil fuels and consequently reduce greenhouse gas (GHG) emissions. The volume looks at a selection of processes for the production of energy and biomaterials, including the Fischer–Tropsch process, gasification, pyrolysis, combustion, fermentation from renewable sources (such as, plants, animals and their byproducts), and others. Applications that are explored include transportation fuels, biodiesel production, wastewater treatment, edible packaging, bioplastics, physical rehabilitation, tissue engineering, biomedical applications, thermal insulation, industrial value compounds, and more. All of the topics covered in this publication address consolidated processes that play a pivotal role in the production of bioenergy and biomaterials because these processes require fewer unitary operations needed in the process, leading to a more direct method of production. This type of production system contributes to decreasing negative effects on the environment, lowering costs, saving energy and time, and improving profitability and efficiency. This volume will be valuable for the industrial sector, for researchers and scientists, as well as for faculty and advanced students.