Comprised of lectures for an intensive course held at the Newton Institute in Cambridge, as part of a NATO Advanced Study Institute, the topics covered within this volume include planetary and solar dynamos, fast dynamos, and the use of symmetry principles to derive evolution equations.
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.
Topics involved in studies of the Earth's magnetic field and its secular variation range from the intricate observations of geomagnetism, to worldwide studies of archeomagnetism and paleomagnetism, through to the complex mathematics of dynamo theory. Traditionally these different aspects of geomagnetism have in the main been studied and presented in isolation from each other. This text draws together these lines of inquiry into an integrated framework to highlight the interrelationships and thus to provide a more comprehensive understanding of the geomagnetic field.
Dynamo theory is the study of how large scale magnetic fields can arise in bodies such as the Earth, Sun, and stars. This text brings together researchers in such diverse subjects as geophysics, astronomy, and nuclear reactor technology and covers topics such as modeling of solar magnetic field generation, theoretical studies of the dynamics of the Earth's core, studies of the magnetic fields in galaxies, and papers on "fast dynamos," the study of magnetic field regeneration in fluid of very high electrical conductivity. This volume represents the most comprehensive and up-to-date record of research into the theory of dynamos and will interest students and professors of astrophysics, applied mathematics, and planetary science.
This timely volume provides the first comprehensive review and synthesis of current understanding of magnetic fields in the Sun and similar stars. Magnetic activity results in a wealth of phenomena - including starspots, non-radiatively heated outer atmospheres, activity cycles, deceleration of rotation rates, and even, in close binaries, stellar cannibalism - all of which are covered clearly and authoritatively. This book brings together for the first time recent results in solar studies and stellar studies. The result is an illuminating new view of stellar magnetic activity. Key topics include radiative transfer, convective simulations, dynamo theory, outer-atmospheric heating, stellar winds and angular momentum loss. Researchers are provided with a state-of-the-art review of this exciting field, and the pedagogical style and introductory material make the book an ideal and welcome introduction for graduate students.
Helioseismology has enabled us to probe the internal structure and dynamics of the Sun, including how its rotation varies in the solar interior. The unexpected discovery of an abrupt transition - the tachocline - between the differentially rotating convection zone and the uniformly rotating radiative interior has generated considerable interest and raised many fundamental issues. This volume contains invited reviews from distinguished speakers at the first meeting devoted to the tachocline, held at the Isaac Newton Institute. It provides a comprehensive account of the understanding of the properties and dynamics of the tachocline, including both observational results and major theoretical issues, involving both hydrodynamic and magnetohydrodynamic behaviour. The Solar Tachocline is a valuable reference for researchers and graduate students in astrophysics, heliospheric physics and geophysics, and the dynamics of fluids and plasmas.
Nonlinear dynamo theory is central to understanding the magnetic structures of planets, stars and galaxies. In chapters contributed by some of the leading scientists in the field, this text explores some of the recent advances in the field. Both kinetic and dynamic approaches to the subject are considered, including fast dynamos, topological methods in dynamo theory, physics of the solar cycle and the fundamentals of mean field dynamo. Advances in Nonlinear Dynamos is ideal for graduate students and researchers in theoretical astrophysics and applied mathematics, particularly those interested in cosmic magnetism and related topics, such as turbulence, convection, and more general nonlinear physics.
The articles in this volume cover, for the first time, all aspects of planetary magnetism, from the observations made by space missions to their interpretation in terms of the properties of all the planets in the solar system. Studies of dynamo-generated magnetic fields in Mercury, the Earth, the giant planets, as well as in Ganymede, one of Jupiter’s moons, are presented. Crustal magnetic field in Mars, the Mon and the Earth are described as well as magnetic fields induced in the solar system bodies. There are several articles dealing with dynamo theory and modelling and applications to the different planets.