Software Quality: Theory and Management has been in print around the world since 1992. After the publisher accidentally removed it from the European market in 1998, it continued to sell well in South East Asia and has to date sold over 10,000 copies world-wide. Originally used with BSc and MSc students at the University of Salford, previous editions have been used as a textbook in the UK, Europe, North America and Asia. However, the contents of the second edition look sadly dated by now, and even core concepts such as development methodologies have moved on substantially. Therefore, I have decided to produce a third edition which has been updated in both content and method of delivery.
Software and systems quality is playing an increasingly important role in the growth of almost all ─ profit and non-profit ─ organisations. Quality is vital to the success of enterprises in their markets. Most small trade and repair businesses use software systems in their administration and marketing processes. Every doctor’s surgery is managing its patients using software. Banking is no longer conceivable without software. Aircraft, trucks and cars use more and more software to handle their increasingly complex technical systems. Innovation, competition and cost pressure are always present in on-going business decisions. The question facing all these organisations is how to achieve the right quality of their software-based systems and products; how to get the required level of quality, a level that the market will reward, a level that mitigates the organisation’s risks and a level that the organisation is willing to pay for. Although a number of good practices are in place, there is still room for huge improvements. Thus, let us take a look into the two worlds of “Embedded systems” and “ICT systems” and let us learn from both worlds, from overlaps and individual solutions. The next step for industrialisation in the software industry is required now. Hence, three pillars will be focused in this book: (1) a fundamental notion of right software and systems quality (RiSSQ); (2) portfolio management, quality governance, quality management, and quality engineering as holistic approach over the three layers of an enterprise, i.e. strategic, tactical, and operational layer; and (3) an industrialisation framework for implementing our approach.
The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals.
"Papers presented at the Eighth International Conference on New Trends in Software Methodologies, Tools and Techniques, (SoMeT 09) held in Prague, Czech Republic ... from September 23rd to 25th 2009."--P. v.
This volume provides an overview of current work in software engineering techniques that can enhance the quality of software. The chapters of this volume, organized by key topic area, create an agenda for the IFIP Working Conference on Software Engineering Techniques, SET 2006. The seven sections of the volume address the following areas: software architectures, modeling, project management, software quality, analysis and verification methods, data management, and software maintenance.
Quality is not a fixed or universal property of software; it depends on the context and goals of its stakeholders. Hence, when you want to develop a high-quality software system, the first step must be a clear and precise specification of quality. Yet even if you get it right and complete, you can be sure that it will become invalid over time. So the only solution is continuous quality control: the steady and explicit evaluation of a product’s properties with respect to its updated quality goals. This book guides you in setting up and running continuous quality control in your environment. Starting with a general introduction on the notion of quality, it elaborates what the differences between process and product quality are and provides definitions for quality-related terms often used without the required level of precision. On this basis, the work then discusses quality models as the foundation of quality control, explaining how to plan desired product qualities and how to ensure they are delivered throughout the entire lifecycle. Next it presents the main concepts and techniques of continuous quality control, discussing the quality control loop and its main techniques such as reviews or testing. In addition to sample scenarios in all chapters, the book is rounded out by a dedicated chapter highlighting several applications of different subsets of the presented quality control techniques in an industrial setting. The book is primarily intended for practitioners working in software engineering or quality assurance, who will benefit by learning how to improve their current processes, how to plan for quality, and how to apply state-of-the-art quality control techniques. Students and lecturers in computer science and specializing in software engineering will also profit from this book, which they can use in practice-oriented courses on software quality, software maintenance and quality assurance.