Soft matter (polymers, colloids, surfactants, liquid crystals) are an important class of materials for modern and future technologies. They are complex materials that behave neither like a fluid nor a solid. This book describes the characteristics of such materials and how we can understand such characteristics in the language of physics.
The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.
In a liquid crystal watch, the molecules contained within a thin film of the screen are reorientated each second by extremely weak electrical signals. Here is a fine example of soft matter: molecular systems giving a strong response to a very weak command signal. They can be found almost everywhere. Soft magnetic materials used in transformers exhibit a strong magnetic moment under the action of a weak magnetic field. Take a completely different domain: gelatin, formed from col lagen fibres dissolved in hot water. When we cool below 37°C, gelation occurs, the chains joining up at various points to form a loose and highly deformable network. This is a natural example of soft matter. Going further, rather than consider a whole network, we could take a single chain of flexible polymer, such as polyoxyethylene [POE = (CH CH O)N, 2 2 5 where N rv 10 ], for example, in water. Such a chain is fragile and may break under flow. Even though hydrodynamic forces are very weak on the molecular scale, their cumulated effect may be significant. Think of a rope pulled from both ends by two groups of children. Even if each girl and boy cannot pull very hard, the rope can be broken when there are enough children pulling.
This text offers an introduction to the properties and behaviour of soft matter. It begins with a treatment of the underlying principles, then discusses how the properties of certain substances and systems are treated within this framework.
This is the first monograph devoted to investigation of the most complex physical processes of soft systems, including a wide class of solutions. It blends modern theoretical understanding and experimental results, proposing new methods and models for the description of several soft systems.
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
Self-assembly is one of the key concepts in contemporary soft condensed matter. It is an umbrella term which encompasses the various modes of spontaneous organization of micrometer-and submicrometer-sized particles into ordered structures of various degrees of complexity, yet it often relies on remarkably simple interactions and mechanisms. Self-assembly is one of the key principles used by nature to construct living matter, where it frequently takes place in a hierarchical fashion.This book contains the lectures from the Enrico Fermi summer school: Soft Matter Self-assembly, held in Varenna, Italy, in June and July 2015. The primary aim of the school was to cover the most exciting modern aspects of self-assembly in soft condensed matter physics, and to enable Ph.D. students and postdocs to engage with some of the most exciting and current topics in the physics of colloids through a series of mini-courses and seminars hosted by leading figures in the field.Subjects covered include: colloids with directional bonding; pathways of self-organization; self-assembly hydrodynamics; polymer structure and dynamics; liquid-crystal colloid dispersions; and self-organizing nanosystems.The proceedings also include two reprints from Reviews of Modern Physics, and will be of interest to both students and experts in the field.
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system
Soft matters differ from hard ones essentially due to former's relatively weak interaction which is comparable to kBTrm (Trm = room temperature) — this results in the major characteristics of soft matters such as 'strong reactions upon weak actions'.Developed over a period of 10 years through soft matter physics lectures for both graduate and undergraduate students in Fudan University, this textbook not only concentrates on the basic interactions inside soft matters through a reductionist approach, but also introduces the exploratory works on the complexity of soft matters in methods of system science.Other important topics in soft matter physics which are included involve static and dynamic electrorheological (ER) effects — an important 'model animal' in the subject, granular media — which explains the thermodynamics of sands and its dynamics, and the Onsager principle of least energy dissipation rate which has been adapted in this textbook to see how it governs the optimal paths of a system's deviation from and restoration to equilibrium.The subject of soft matter physics is still in its infancy, making it highly exciting and attractive. If you like a challenging subject, you will most certainly fall in love with soft matter physics at first read!