High Performance,low Complexity VLSI Design of Turbo Decoders
Author: Zhongfeng Wang
Publisher:
Published: 2000
Total Pages: 396
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Zhongfeng Wang
Publisher:
Published: 2000
Total Pages: 396
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 2005
Total Pages: 580
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 2004
Total Pages: 778
ISBN-13:
DOWNLOAD EBOOKAuthor: Ivan B. Djordjevic
Publisher: Academic Press
Published: 2022-07-17
Total Pages: 624
ISBN-13: 0128231009
DOWNLOAD EBOOKQuantum Communication, Quantum Networks, and Quantum Sensing represents a self-contained introduction to quantum communication, quantum error-correction, quantum networks, and quantum sensing. It starts with basic concepts from classical detection theory, information theory, and channel coding fundamentals before continuing with basic principles of quantum mechanics including state vectors, operators, density operators, measurements, and dynamics of a quantum system. It continues with fundamental principles of quantum information processing, basic quantum gates, no-cloning and theorem on indistinguishability of arbitrary quantum states. The book then focuses on quantum information theory, quantum detection and Gaussian quantum information theories, and quantum key distribution (QKD). The book then covers quantum error correction codes (QECCs) before introducing quantum networks. The book concludes with quantum sensing and quantum radars, quantum machine learning and fault-tolerant quantum error correction concepts. - Integrates quantum information processing fundamentals, quantum communication, quantum error correction, quantum networks, QKD, quantum sensing, and quantum machine learning - Provides in-depth exposition on the design of quantum error correction circuits, quantum communications systems, quantum networks, and quantum sensing systems - Shows how to design the information processing circuits, stabilizer codes, CSS codes, entanglement-assisted quantum error correction codes - Describes quantum machine learning
Author: Tom Richardson
Publisher: Cambridge University Press
Published: 2008-03-17
Total Pages: 590
ISBN-13: 9780521852296
DOWNLOAD EBOOKHaving trouble deciding which coding scheme to employ, how to design a new scheme, or how to improve an existing system? This summary of the state-of-the-art in iterative coding makes this decision more straightforward. With emphasis on the underlying theory, techniques to analyse and design practical iterative coding systems are presented. Using Gallager's original ensemble of LDPC codes, the basic concepts are extended for several general codes, including the practically important class of turbo codes. The simplicity of the binary erasure channel is exploited to develop analytical techniques and intuition, which are then applied to general channel models. A chapter on factor graphs helps to unify the important topics of information theory, coding and communication theory. Covering the most recent advances, this text is ideal for graduate students in electrical engineering and computer science, and practitioners. Additional resources, including instructor's solutions and figures, available online: www.cambridge.org/9780521852296.
Author: Sarah J. Johnson
Publisher: Cambridge University Press
Published: 2010
Total Pages: 356
ISBN-13: 0521871484
DOWNLOAD EBOOKPresents all of the key ideas needed to understand, design, implement and analyse iterative-based error correction schemes.
Author: Marc Mézard
Publisher: Oxford University Press
Published: 2009-01-22
Total Pages: 584
ISBN-13: 019857083X
DOWNLOAD EBOOKA very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Author: Lajos Hanzo
Publisher: John Wiley & Sons
Published: 2011-05-03
Total Pages: 839
ISBN-13: 0470978333
DOWNLOAD EBOOKCovering the full range of channel codes from the most conventional through to the most advanced, the second edition of Turbo Coding, Turbo Equalisation and Space-Time Coding is a self-contained reference on channel coding for wireless channels. The book commences with a historical perspective on the topic, which leads to two basic component codes, convolutional and block codes. It then moves on to turbo codes which exploit iterative decoding by using algorithms, such as the Maximum-A-Posteriori (MAP), Log-MAP and Soft Output Viterbi Algorithm (SOVA), comparing their performance. It also compares Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) and Iterative BICM (BICM-ID) under various channel conditions. The horizon of the content is then extended to incorporate topics which have found their way into diverse standard systems. These include space-time block and trellis codes, as well as other Multiple-Input Multiple-Output (MIMO) schemes and near-instantaneously Adaptive Quadrature Amplitude Modulation (AQAM). The book also elaborates on turbo equalisation by providing a detailed portrayal of recent advances in partial response modulation schemes using diverse channel codes. A radically new aspect for this second edition is the discussion of multi-level coding and sphere-packing schemes, Extrinsic Information Transfer (EXIT) charts, as well as an introduction to the family of Generalized Low Density Parity Check codes. This new edition includes recent advances in near-capacity turbo-transceivers as well as new sections on multi-level coding schemes and of Generalized Low Density Parity Check codes Comparatively studies diverse channel coded and turbo detected systems to give all-inclusive information for researchers, engineers and students Details EXIT-chart based irregular transceiver designs Uses rich performance comparisons as well as diverse near-capacity design examples
Author: Xiang Zhou
Publisher: John Wiley & Sons
Published: 2016-04-29
Total Pages: 649
ISBN-13: 1118714962
DOWNLOAD EBOOKEnabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.