This book provides a comprehensive introduction to the embryonic field of smart materials and structures, and also presents a state-of-the-art review of the sub-disciplines of the field. It informs readers of the technical challenges to the commercialisation of products incorporating these material technologies.
This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the art in the field as well as generating inspiration for future ideas specifically on a multidisciplinary level. The scope of the Conference included topics related to the following areas: Fundamentals of smart materials and structures; Modeling/formulation and characterization of smart actuators, sensors and smart material systems; Trends and developments in diverse areas such as material science including composite materials, intelligent hydrogels, interfacial phenomena, phase boundaries and boundary layers of phase boundaries, control, micro- and nano-systems, electronics, etc. to be considered for smart systems; Comparative evaluation of different smart actuators and sensors; Analysis of structural concepts and designs in terms of their adaptability to smart technologies; Design and development of smart structures and systems; Biomimetic phenomena and their inspiration in engineering; Fabrication and testing of smart structures and systems; Applications of smart materials, structures and related technology; Smart robots; Morphing wings and smart aircrafts; Artificial muscles and biomedical applications; Smart structures in mechatronics; and Energy harvesting.
This new edition of our 2016 book provides insight into designing intelligent materials and structures for special application in engineering. Literature is updated throughout and a new chapter on optics fibers has been added. The book discusses simulation and experimental determination of physical material properties, such as piezoelectric effects, shape memory, electro-rheology, and distributed control for vibrations minimization.
Significant changes have occurred in materials science, including increasing demands on life extensions, and the reliability and exploitability of components, materials, and structures. These changes provide smart technologies with excellent application opportunities in aerospace, civil and electrical engineering, transportation, manufacturing, communications, defense, and medicine. Smart Materials and Structures presents an overview of current developments in the characterization and applications of materials and actuators, issues surrounding their control, and the integration of smart systems and technologies. This compendium provides a valuable synopsis of this rapidly expanding and topical research field for engineers, program managers, technologists, physicists, materials scientists, and mathematicians working to advance smart materials, research methods, their applications, and robotic technologies.
Smart materials are materials that have one or more property that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, or pH. Active materials and smart structures offer a wealth of new opportunities to human ingenuity and engineering design. Whereas smart structures have the attributes of adaptability, flexibility, and even 'intelligence', the active materials are the enabling factors that make smart composite structures possible. This new Major Reference Work on smart materials provides a full and comprehensive source of information for both researchers and practitioners on the fundamental and recent developments in the fields of design, development, manufacturing and application of smart materials. Comprehensive subject coverage across the whole field of Smart Materials in one integrated resource In-depth explanation of the latest developments and research topics Thematically arranged to allow the user to easily find what they need
Dynamics of Smart Structures is a practical, concise and integrated text that provides an introduction to the fundamental principles of a field that has evolved over the recent years into an independent and identifiable subject area. Bringing together the concepts, techniques and systems associated with the dynamics and control of smart structures, it comprehensively reviews the differing smart materials that are employed in the development of the smart structures and covers several recent developments in the field of structural dynamics. Dynamics of Smart Structures has been developed to complement the author's new interdisciplinary programme of study at Queen Mary, University of London that includes courses on emerging and new technologies such as biomimetic robotics, smart composite structures, micro-electro-mechanical systems (MEMS) and their applications and prosthetic control systems. It includes chapters on smart materials and structures, transducers for smart structures, fundamentals of structural control, dynamics of continuous structures, dynamics of plates and plate-like structures, dynamics of piezoelectric media, mechanics of electro-actuated composite structures, dynamics of thermo-elastic media: shape memory alloys, and controller designs for flexible structures.
This book introduces the enabling concepts that make up the so-called smart structure and presents a number of brief case studies to illustrate the applications of these concepts. It examines the domains of the individual technologies and defines the challenges faced by the integrator. The book is particularly effective for the potential system user who needs a good technical general background on the subject and is also useful for students and researchers in contributory technologies who want to better understand the context of their work. Consultants in civil and structural engineering will also find it of interest.
"Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an Associate Professor at the Department of Civil Engineering, Indian Institute of Technology Delhi, India.
This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.