This book provides in-depth coverage of smart materials, including electroactive polymers (EAPs), synthetic muscle, pneumatic artificial muscle, soft pneumatics, hydro-muscle, and other cutting-edge transformational smart material technologies. It looks at ways smart materials respond to stimuli, such as electricity, pressure, temperature, magnetism, or light. State-of-the-art developments in EAP based actuation and pneumatics are covered, including nanotechnology, soft robotics, EAP considerations for NASA applications and thermal control of satellites, control of mirrors using dielectric elastomeric actuators, and biomimetic design and function in robotics and prosthetics. A detailed analysis of the challenges of smart materials on Earth and in space is included, with an interview about considerations and training for Missions to Moon and Mars. This book is a must-read within the smart material and space communities, from tech savvy students to industry professionals.
This textbook covers the fundamentals of different functional material systems aimed at advanced undergraduate and postgraduate students. Each chapter includes an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, chemomechanical polymers and self-healing materials.
Fachlich auf höchstem Niveau, visuell überzeugend und durchgängig farbig illustriert: Das ist die neue Auflage der praxisbewährten Einführung in spezialisierte elektronische Materialien und Bauelemente aus der Informationstechnologie. Über ein Drittel des Inhalts ist neu, alle anderen Beiträge wurden gründlich überarbeitet und aktualisiert.
The integration of electronics into textiles and clothing has opened up an array of functions beyond those of conventional textiles. These novel materials are beginning to find applications in commercial products, in fields such as communication, healthcare, protection and wearable technology. Electronic Textiles: Smart Fabrics and Wearable Technology opens with an initiation to the area from the editor, Tilak Dias. Part One introduces conductive fibres, carbon nano-tubes and polymer yarns. Part Two discusses techniques for integrating textiles and electronics, including the design of textile-based sensors and actuators, and energy harvesting methods. Finally, Part Three covers a range of electronic textile applications, from wearable electronics to technical textiles featuring expert chapters on embroidered antennas for communication systems and wearable sensors for athletes. - Comprehensive overview of conductive fibres, yarns and fabrics for electronic textiles - Expert analysis of textile-based sensors design, integration of micro-electronics with yarns and photovoltaic energy harvesting for intelligent textiles - Detailed coverage of applications in electronic textiles, including werable sensors for athletes, embroidered antennas for communication and electronic textiles for military personnel
Combining the materials science, technological, and device aspects of organic bioelectronics based on green materials, this is the first overview of the emerging concepts involving fabrication techniques for sustainable electronics with low energy and material consumption. With contributions from top-notch editors and authors, in one focus, the book covers a collection of natural materials suited for electronics applications such as paper, silk, melanin, DNA and nucleobases, resins, gums, saccharides, cellulose, gelatine and peptides. In another thrust, the book focuses on device fabrication based on these materials, including processing aspects, and applications such as sensors, signal transducers, transient, implantable and digestible electronics. With its interdisciplinary approach this text will appeal to the chemistry, physics, materials science, and engineering communities.
This handbook brings together technical expertise, conceptual background, applications, and societal aspects of Industry 4.0: the evolution of automation and data exchange in fabrication technologies, materials processing, and device manufacturing at both experimental and theoretical model scales. The book assembles all the aspects of Industry 4.0, starting from the emergence of the concept to the consequences of its progression. Drawing on expert contributors from around the world, the volume details the technologies that sparked the fourth revolution and illustrates their characteristics, potential, and methods of use in the industrial and societal domains. In addition, important topics such as ethics, privacy and security are considered in a reality where all data is shared and saved remotely. The collection of contribution serve a very broad audience working in the fields of science and engineering, chemical engineering, materials science, nanotechnology, energy, environment, green chemistry, sustainability, electrical and electronic engineering, solid-state physics, surface science, aerosol technology, chemistry, colloid science, device engineering, and computer technology. This handbook ideal reference libraries in universities and industrial institutions, government and independent institutes, individual research groups and scientists.
219 8. 2 Sensors 221 8. 3 Physical Sensors 222 8. 3. 1 Electrical Sensing Means 223 8. 3. 2 Magnetic Field Methods 231 8. 3. 3 Optical Methods 232 8. 4 Chemical Sensors 241 8. 4. 1 Electrical Gas and Chemical Sensors 243 8. 4. 2 Guided-Optics Intrinsic Chemical Sensors 246 8. 4. 3 Extrinsic Chemical Sensors 250 8. 4. 4 Polymer Waveguide Chemical Sensors 251 8. 4. 5 Surface Plasmon Chemical Sensors 252 8. 4. 6 Indicator-Mediated Extrinsic Sensing 253 8. 4. 7 Optical Biosensors 256 8. 4. 8 Ultrasonic Gas and Chemical Sensors 257 8. 4. 9 Intelligent Sensors 258 8. 5 Connections/Links and Wiring 258 8. 5. 1 Optical Links 260 8. 5. 2 Requirement on the Processing Unit/Intelligence 262 8. 6 Actuators 263 8. 7 Signal Processing/Computing 264 8. 7. 1 Implicit Computation 266 8. 7. 2 Explicit Computation 267 8. 8 References 274 Subject Index 279 Micro-Actuators (Electrical, Magnetic, Thermal, Optical, Mechanical, and Chemical) It has become quite apparent that sensors and actuators are the main bottleneck of the modem information processing and control systems. Microprocessors and computers used to be the main limiting element in most information processing systems. But thanks to the enonnous progress in the microelectronics industry, most information analysis tasks can be processed in real time. The data has to be acquired by the processor in some form and processed and used to produce some useful function in the real world.
Smart Textiles and Their Applications outlines the fundamental principles of applied smart textiles, also reporting on recent trends and research developments. Scientific issues and proposed solutions are presented in a rigorous and constructive way that fully presents the various results, prototypes, and case-studies obtained from academic and industrial laboratories worldwide. After an introduction to smart textiles and their applications from the editor, Part One reviews smart textiles for medical purposes, including their use in health monitoring, treatment delivery, and assistive technologies. Part Two covers smart textiles for transportation and energy, with chapters covering smart textiles for the monitoring of structures and processes, as well as smart textiles for energy generation. The final section considers smart textiles for protection, security, and communication, and includes chapters covering electrochromic textile displays, textile antennas, and smart materials for personal protective equipment. - Scientific issues and proposed solutions are presented in a rigorous and constructive way regarding various results, prototypes, and case-studies obtained from academic and industrial laboratories worldwide - Useful for researchers and postgraduate students, and also for existing companies and start-ups that are developing products involving smart textiles - Authored and edited by an international team who are experts in the field ensure comprehensive coverage and global relevance
Biopolymer Composites in Electronics examines the current state-of-the-art in the electronic application based on biopolymer composites. Covering the synthesis, dispersion of fillers, characterization and fabrication of the composite materials, the book will help materials scientists and engineers address the challenges posed by the increased use of biopolymeric materials in electronic applications. The influence of preparation techniques on the generation of micro, meso, and nanoscale fillers, and the effect of filler size and dispersion on various biopolymers are discussed in detail. Applications covered include sensors, actuators, optics, fuel cells, photovoltaics, dielectrics, electromagnetic shielding, piezoelectrics, flexible displays, and microwave absorbers. In addition, characterization techniques are discussed and compared, enabling scientists and engineers to make the correct choice of technique. This book is a 'one-stop' reference for researchers, covering the entire state-of-the-art in biopolymer electronics. Written by a collection of expert worldwide contributors from industry, academia, government, and private research institutions, it is an outstanding reference for researchers in the field of biopolymer composites for advanced technologies. - Enables researchers to keep up with the rapid development of biopolymer electronics, which offer light, flexible, and more cost-effective alternatives to conventional materials of solar cells, light-emitting diodes, and transistors - Includes thorough coverage of the physics and chemistry behind biopolymer composites, helping readers to become rapidly acquainted with the fiel - Provides in-depth information on the range of biopolymer applications in electronics, from printed flexible conductors and novel semiconductor components, to intelligent labels, large area displays, and solar panels