Edited and written by the engineers intimately involved in the project, this text presents both theory and practice in site reclamation and provides valuable lessons in site investigation geotechnical instrumentation and more.
The book describes the theory and current practices for design of earth lateral support for deep excavations in soil. It addresses basic principles of soil mechanics and explains how these principles are embodied in design methods including hand calculations. It then introduces the use of numerical methods including the fundamental “beam on springs” models, and then more sophisticated computer programmes which can model soil as a continuum in two or three dimensions. Constitutive relationships are introduced that are in use for representing the behaviour of soil including a strain hardening model, and a Cam Clay model including groundwater flow and coupled consolidation. These methods are illustrated by reference to practical applications and case histories from the author’s direct experience, and some of the pitfalls that can occur are discussed. Theory and design are strongly tied to construction practice, with emphasis on monitoring the retaining structures and movement of surrounding ground and structures, in the context of safety and the Observational Method. Examples are presented for conventional “Bottom-up” and “Top-down” sequences, along with hybrid sequences giving tips on how to optimise the design and effect economies of cost and time for construction. It is written for practising geotechnical, civil and structural engineers, and especially for senior and MSc students.
This anthology is a book-length study of China's ecosystem through the lens of cinema. Proposing 'ecocinema' as a new critical framework, the volume collectively investigates a wide range of urgent topics in today's world.
This volume contains seven keynote lectures and over 100 technical contributions by scientists, researchers, engineers and students from more than 25 countries and regions worldwide on the subject of soft soil engineering.
"This volume contains 101 papers presented at the 8th International Conference on the Application of Stress Wave Theory to Piles, held in Lisbon, Portugal in 2008." "It is divided in 14 chapters according to the conference themes: Wave mechanics applied to pile engineering; Relationship between static resistance to driving and long-term static soil resistance; Case histories involving measurementand analysis of stress waves; Dynamic monitoring of driven piles; Dynamic soil-pile interaction models - numerical and physical modeling; High-strain dynamic test; Low-strain dynamic test; Rapid-load test; Monitoring and analysis of vibratory driven piles; Correlation of dynamic and static load tests; Quality assurance of deep foundations using dynamic methods; Incorporation of dynamic testing into design codes and testing standards; Ground vibrations induced by pile motions; Dynamic measurements in ground field testing." "This conference aims to contribute to a better and more efficient professional interaction between specialized contractors, designers and academicians. By joining the contribution of all of them it was possible to elucidate the today's state-of-the-art in science, technology and practice in the application of stress wave theory to piles."--BOOK JACKET.
This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this field
This book synthesizes knowledge of coastal and riverine material fluxes, biogeochemical processes and indications of change, both natural, and increasingly human-initiated. Here, the authors assess coastal flux in the past and present, and in future under the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP) and the LOICZ II (Land-Ocean Interactions in the Coastal Zone) Project.
Bridges the Gap between Geology and Ground Engineering High-quality geological models are crucial for ground engineering projects, but many engineers are not always at ease with the geological terminology and analysis presented in these models, nor with their implications and limitations. Project engineers need to have a sound comprehension of the geological models presented to them, and to be able to discuss the models in so far as they might impinge on the design, safety and possible budgetary or time constraints of the project. They should also fully understand how site investigation data and samples are used to develop and substantiate geological models. Geology for Ground Engineering Projects provides a comprehensive presentation of, and insight into, the critical geological phenomena that may be encountered in many engineering projects, for example rock contact relationships, weathering and karst phenomena in tropical areas, composition of fault zones and variability of rock discontinuities. Examples are provided from around the world, including Southeast Asia, Europe, North and South America, China and India. Comprehensive and well-illustrated, this definitive book: Describes the important geological phenomena that could affect ground engineering projects Provides a practical knowledge-base for relevant geological processes Addresses common geological issues and concerns Rocks are described in relation to the environment of their formation, highlighting the variation in composition, distribution and geotechnical properties that can be expected within a variety of rock associations. Case studies, where geology has been a vital factor, are included. These are written by the project engineers or geologists responsible for the projects. Geology for Ground Engineering Projects is well illustrated with color diagrams and photographs. Readers are directed to satellite images of selected areas to explore for themselves many of the geological features described in this book.
Geologists and civil engineers related to infrastructure planning, design and building describe professional practices and engineering geological methods in different European infrastructure projects.