Singular Integrals in Boundary Element Methods

Singular Integrals in Boundary Element Methods

Author: Vladimír Sládek

Publisher: Computational Mechanics

Published: 1998

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

A text in singular integrals in boundary element methods. Topics covered include: treatment in crack problems; regularization of boundary integral equations by the derivative transfer method; regularization and evaluation of singular domain integrals in boundary element methods and others.


The Isogeometric Boundary Element Method

The Isogeometric Boundary Element Method

Author: Gernot Beer

Publisher: Springer Nature

Published: 2019-09-21

Total Pages: 342

ISBN-13: 3030233391

DOWNLOAD EBOOK

This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method

Author: John P. Wolf

Publisher: John Wiley & Sons

Published: 2003-03-14

Total Pages: 398

ISBN-13: 9780471486824

DOWNLOAD EBOOK

A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.


Boundary Element Methods

Boundary Element Methods

Author: Stefan A. Sauter

Publisher: Springer Science & Business Media

Published: 2010-11-01

Total Pages: 575

ISBN-13: 3540680934

DOWNLOAD EBOOK

This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.


Boundary Elements: Theory and Applications

Boundary Elements: Theory and Applications

Author: John T. Katsikadelis

Publisher: Elsevier

Published: 2002-05-28

Total Pages: 351

ISBN-13: 0080528244

DOWNLOAD EBOOK

The author's ambition for this publication was to make BEM accessible to the student as well as to the professional engineer. For this reason, his maintask was to organize and present the material in such a way so that the book becomes "user-friendly" and easy to comprehend, taking into account only the mathematics and mechanics to which students have been exposed during their undergraduate studies. This effort led to an innovative, in many aspects, way of presentingBEM, including the derivation of fundamental solutions, the integral representation of the solutions and the boundary integral equations for various governing differentialequations in a simple way minimizing a recourse to mathematics with which the student is not familiar. The indicial and tensorial notations, though they facilitate the author's work and allow to borrow ready to use expressions from the literature, have been avoided in the present book. Nevertheless, all the necessary preliminary mathematical concepts have been included in order to make the book complete and self-sufficient.Throughout the book, every concept is followed by example problems, which have been worked out in detail and with all the necessary clarifications. Furthermore, each chapter of the book is enriched with problems-to-solve. These problems serve a threefold purpose. Some of them are simple and aim at applying and better understanding the presented theory, some others are more difficult and aim at extending the theory to special cases requiring a deeper understanding of the concepts, and others are small projects which serve the purpose of familiarizing the student with BEM programming and the programs contained in the CD-ROM.The latter class of problems is very important as it helps students to comprehend the usefulness and effectiveness of the method by solving real-life engineering problems. Through these problems students realize that the BEM is a powerful computational tool and not an alternative theoretical approach for dealing with physical problems. My experience in teaching BEM shows that this is the students' most favorite type of problems. They are delighted to solve them, since they integrate their knowledge and make them feel confident in mastering BEM.The CD-ROM which accompanies the book contains the source codes of all the computer programs developed in the book, so that the student or the engineer can use them for the solution of a broad class of problems. Among them are general potential problems, problems of torsion, thermal conductivity,deflection of membranes and plates, flow of incompressible fluids, flow through porous media, in isotropic or anisotropic, homogeneous or composite bodies, as well as plane elastostatic problems in simply or multiply connected domains. As one can readily find out from the variety of the applications, the book is useful for engineers of all disciplines. The author is hopeful that the present book will introduce the reader to BEM in an easy, smooth and pleasant way and also contribute to itsdissemination as a modern robust computational tool for solving engineering problems.


The Boundary Element Method

The Boundary Element Method

Author: W.S. Hall

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 940110784X

DOWNLOAD EBOOK

The Boundary Element Method is a simple, efficient and cost effective computational technique which provides numerical solutions - for objects of any shap- for a wide range of scientific and engineering problems. In dealing with the development of the mathematics of the Boundary Element Method the aim has been at every stage, only to present new material when sufficient experience and practice of simpler material has been gained. Since the usual background of many readers will be of differential equations, the connection of differential equations with integral equations is explained in Chapter 1, together with analytical and numerical methods of solution. This information on integral equations provides a base for the work of subsequent chapters. The mathematical formulation of boundary integral equations for potential problems - derived from the more familiar Laplace partial differential equation which governs many important physical problems - is set out in Chapter 2. It should be noted here that this initial formulation of the boundary integral equations reduces the dimensionality of the problem. In the key Chapter 3, the essentials of the Boundary Element Method are presented. This first presentation of the Boundary Element Method is in its simplest and most approachable form - two dimensional, with the shape of the boundary approximated by straight lines and the functions approximated by constants over each of the straight lines.


The Boundary Element Method for Engineers and Scientists

The Boundary Element Method for Engineers and Scientists

Author: John T. Katsikadelis

Publisher: Academic Press

Published: 2016-10-10

Total Pages: 466

ISBN-13: 0128020105

DOWNLOAD EBOOK

The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website. - Offers an accessible guide to BEM principles and numerical implementation, with worked examples and detailed discussion of practical applications - This second edition features three new chapters, including coverage of the dual reciprocity method (DRM) and analog equation method (AEM), with their application to complicated problems, including time dependent and non-linear problems, as well as problems described by fractional differential equations - Companion website includes source code of all computer programs developed in the book for the solution of a broad range of real-life engineering problems


The Boundary Element Method, Volume 1

The Boundary Element Method, Volume 1

Author: L. C. Wrobel

Publisher: John Wiley & Sons

Published: 2002-04-22

Total Pages: 480

ISBN-13: 9780471720393

DOWNLOAD EBOOK

The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.


Boundary Integral Equations

Boundary Integral Equations

Author: George C. Hsiao

Publisher: Springer Nature

Published: 2021-03-26

Total Pages: 783

ISBN-13: 3030711277

DOWNLOAD EBOOK

This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.