Polymer Solutions: An Introduction to Physical Properties offers a fresh, inclusive approach to teaching the fundamentals of physical polymer science. Students, instructors, and professionals in polymer chemistry, analytical chemistry, organic chemistry, engineering, materials, and textiles will find Iwao Teraoka’s text at once accessible and highly detailed in its treatment of the properties of polymers in the solution phase. Teraoka’s purpose in writing Polymer Solutions is twofold: to familiarize the advanced undergraduate and beginning graduate student with basic concepts, theories, models, and experimental techniques for polymer solutions; and to provide a reference for researchers working in the area of polymer solutions as well as those in charge of chromatographic characterization of polymers. The author’s incorporation of recent advances in the instrumentation of size-exclusion chromatography, the method by which polymers are analyzed, renders the text particularly topical. Subjects discussed include: Real, ideal, Gaussian, semirigid, and branched polymer chains Polymer solutions and thermodynamics Static light scattering of a polymer solution Dynamic light scattering and diffusion of polymers Dynamics of dilute and semidilute polymer solutions Study questions at the end of each chapter not only provide students with the opportunity to test their understanding, but also introduce topics relevant to polymer solutions not included in the main text. With over 250 geometrical model diagrams, Polymer Solutions is a necessary reference for students and for scientists pursuing a broader understanding of polymers.
Viscoelasticandtransportpropertiesofpolymersintheliquid(solution,melt)or liquid-like (rubber) state determine their processing and application to a large extent and are of basic physical interest [1—3]. An understanding of these dynamic properties at a molecular level, therefore, is of great importance. However,thisunderstandingiscomplicatedbythefactsthatdi?erentmotional processes may occur on di?erent length scales and that the dynamics are governed by universal chain properties as well as by the special chemical structure of the monomer units [4,5]. The earliest and simplest approach in this direction starts from Langevin equations with solutions comprising a spectrum of relaxation modes [1—4]. Special features are the incorporation of entropic forces (Rouse model, [6]) which relax uctuations of reduced entropy, and of hydrodynamic interactions (Zimm model, [7]) which couple segmental motions via long-range back ow elds in polymer solutions, and the inclusion of topological constraints or entanglements (reptation or tube model, [8—10]) which are mutually imposed within a dense ensemble of chains. Another approach, neglecting the details of the chemical structure and concentratingontheuniversalelementsofchainrelaxation,isbasedondynamic scalingconsiderations[4,11].Inparticularinpolymersolutions,thisapproach o?ers an elegant tool to specify the general trends of polymer dynamics, although it su?ers from the lack of a molecular interpretation. A real test of these theoretical approaches requires microscopic methods, which simultaneously give direct access to the space and time evolution of the segmental di?usion. Here, quasi-elastic scattering methods play a crucial role sincetheyallowthemeasurementofthecorrespondingcorrelationfunctions.In particular,thehigh-resolutionneutronspinecho(NSE)spectroscopy[12—15]is very suitable for such investigations since this method covers an appropriate range in time (0.005)t/ns)40) and space (r/nm [15). Furthermore, the possibilityoflabellingbyhydrogen-deuteriumexchangeallowstheobservation of single-chain behavior even in the melt.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
Written by leading experts from around the world, Monte Carlo and Molecular Dynamics Simulations in Polymer Science comprehensively reviews the latest simulation techniques for macromolecular materials. Focusing in particular on numerous new techniques, the book offers authoritative introductions to solutions of neutral polymers and polyelectrolytes; dynamics of polymer melts, rubbers and gels, and glassy materials; thermodynamics of polymer mixing and mesophase formation, and polymers confined at interfaces and grafted to walls. Throughout, contributors offer practical advice on how to overcome the unique challenges posed by the large size and slow relaxation of polymer coils. Students and researchers in polymer chemistry, polymer physics, chemical engineering, and materials and computational science will all benefit from the cogent, step-by-step introductions contained in this important new book.
This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.
A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.
A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.