Simultaneous Statistical Inference

Simultaneous Statistical Inference

Author: Rupert G. Jr. Miller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 311

ISBN-13: 1461381223

DOWNLOAD EBOOK

Simultaneous Statistical Inference, which was published originally in 1966 by McGraw-Hill Book Company, went out of print in 1973. Since then, it has been available from University Microfilms International in xerox form. With this new edition Springer-Verlag has republished the original edition along with my review article on multiple comparisons from the December 1977 issue of the Journal of the American Statistical Association. This review article covered developments in the field from 1966 through 1976. A few minor typographical errors in the original edition have been corrected in this new edition. A new table of critical points for the studentized maximum modulus is included in this second edition as an addendum. The original edition included the table by K. C. S. Pillai and K. V. Ramachandran, which was meager but the best available at the time. This edition contains the table published in Biometrika in 1971 by G. 1. Hahn and R. W. Hendrickson, which is far more comprehensive and therefore more useful. The typing was ably handled by Wanda Edminster for the review article and Karola Decleve for the changes for the second edition. My wife, Barbara, again cheerfully assisted in the proofreading. Fred Leone kindly granted permission from the American Statistical Association to reproduce my review article. Also, Gerald Hahn, Richard Hendrickson, and, for Biometrika, David Cox graciously granted permission to reproduce the new table of the studentized maximum modulus. The work in preparing the review article was partially supported by NIH Grant ROI GM21215.


Simultaneous Inference in Regression

Simultaneous Inference in Regression

Author: Wei Liu

Publisher: CRC Press

Published: 2010-10-19

Total Pages: 292

ISBN-13: 1439828105

DOWNLOAD EBOOK

Simultaneous confidence bands enable more intuitive and detailed inference of regression analysis than the standard inferential methods of parameter estimation and hypothesis testing. Simultaneous Inference in Regression provides a thorough overview of the construction methods and applications of simultaneous confidence bands for various inferentia


Simultaneous Statistical Inference

Simultaneous Statistical Inference

Author: Thorsten Dickhaus

Publisher: Springer Science & Business Media

Published: 2014-01-23

Total Pages: 182

ISBN-13: 3642451829

DOWNLOAD EBOOK

This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.


Linear Models in Statistics

Linear Models in Statistics

Author: Alvin C. Rencher

Publisher: John Wiley & Sons

Published: 2008-01-07

Total Pages: 690

ISBN-13: 0470192607

DOWNLOAD EBOOK

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.


Applied Linear Statistical Models

Applied Linear Statistical Models

Author: Michael H. Kutner

Publisher: McGraw-Hill/Irwin

Published: 2005

Total Pages: 1396

ISBN-13: 9780072386882

DOWNLOAD EBOOK

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.


Multiple Regression and Beyond

Multiple Regression and Beyond

Author: Timothy Z. Keith

Publisher: Routledge

Published: 2019-01-14

Total Pages: 640

ISBN-13: 1351667939

DOWNLOAD EBOOK

Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources


Multivariate T-Distributions and Their Applications

Multivariate T-Distributions and Their Applications

Author: Samuel Kotz

Publisher: Cambridge University Press

Published: 2004-02-16

Total Pages: 296

ISBN-13: 9780521826549

DOWNLOAD EBOOK

Almost all the results available in the literature on multivariate t-distributions published in the last 50 years are now collected together in this comprehensive reference. Because these distributions are becoming more prominent in many applications, this book is a must for any serious researcher or consultant working in multivariate analysis and statistical distributions. Much of this material has never before appeared in book form. The first part of the book emphasizes theoretical results of a probabilistic nature. In the second part of the book, these are supplemented by a variety of statistical aspects. Various generalizations and applications are dealt with in the final chapters. The material on estimation and regression models is of special value for practitioners in statistics and economics. A comprehensive bibliography of over 350 references is included.


Simultaneous Statistical Inference

Simultaneous Statistical Inference

Author: Rupert G. Miller

Publisher: Springer

Published: 1981-03-18

Total Pages: 324

ISBN-13:

DOWNLOAD EBOOK

Normal univariate techniques; regression techniques; nonparametric techniques; multivariate techniques; miscellaneous techniques; strong law for the expected error rate; tables; developments in multiple comparisons 1966-1976; addendum new table of the studentized maximum modulus.


Linear Regression Analysis

Linear Regression Analysis

Author: Xin Yan

Publisher: World Scientific

Published: 2009

Total Pages: 349

ISBN-13: 9812834109

DOWNLOAD EBOOK

"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.


Univariate and Multivariate General Linear Models

Univariate and Multivariate General Linear Models

Author: Kevin Kim

Publisher: CRC Press

Published: 2006-10-11

Total Pages: 549

ISBN-13: 1420011367

DOWNLOAD EBOOK

Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral