Simulations of Oscillatory Systems

Simulations of Oscillatory Systems

Author: Eugene I. Butikov

Publisher: CRC Press

Published: 2015-03-06

Total Pages: 367

ISBN-13: 149870770X

DOWNLOAD EBOOK

Deepen Your Students' Understanding of Oscillations through Interactive ExperimentsSimulations of Oscillatory Systems: with Award-Winning Software, Physics of Oscillations provides a hands-on way of visualizing and understanding the fundamental concepts of the physics of oscillations. Both the textbook and software are designed as exploration-orien


Computer Modeling and Simulation of Dynamic Systems Using Wolfram SystemModeler

Computer Modeling and Simulation of Dynamic Systems Using Wolfram SystemModeler

Author: Kirill Rozhdestvensky

Publisher: Springer Nature

Published: 2020-03-20

Total Pages: 274

ISBN-13: 9811528039

DOWNLOAD EBOOK

This book briefly discusses the main provisions of the theory of modeling. It also describes in detail the methodology for constructing computer models of dynamic systems using the Wolfram visual modeling environment, SystemModeler, and provides illustrative examples of solving problems of mechanics and hydraulics. Intended for students and professionals in the field, the book also serves as a supplement to university courses in modeling and simulation of dynamic systems.


Temporal Disorder in Human Oscillatory Systems

Temporal Disorder in Human Oscillatory Systems

Author: Ludger Rensing

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 264

ISBN-13: 3642726372

DOWNLOAD EBOOK

Rhythms of the heart and of the nervous and endocrine system, breathing, locomotory movements, sleep, circadian rhythms and tissue cell cycles are major elements of the temporal order of man. The dynamics of these systems are characterized by changes in the properties of an oscillator, transitions from oscillatory states into chaotic or stationary states, and vice versa, coupling or uncoupling between two or more oscillators. Any deviation from the normal range to either more or less ordered states may be defined as temporal disorder. Pathological changes of temporal organization, such as tremor, epileptic seizures, Cheyne-Stokes breathing, cardiac arrhythmicities and circadian desynchronization, may be caused by small changes in the order (control) parameters. One major aspect of the symposium was the analysis of characteristic features of these temporal control systems, including nonlinear dynamics of interactions, positive, negative and mixed feedback systems, temporal delays, and their mathematical description and modelling. The ultimate goal is a better understanding of the principles of temporal organization in order to treat periodic diseases or other perturbations of "normal" dynamics in human oscillatory systems.


Numerical Simulation and Modelling of Electronic and Biochemical Systems

Numerical Simulation and Modelling of Electronic and Biochemical Systems

Author: Jaijeet Roychowdhury

Publisher: Now Publishers Inc

Published: 2009

Total Pages: 222

ISBN-13: 1601983042

DOWNLOAD EBOOK

Numerical simulation and modelling have been growing in importance and seeing steadily increasing practical application. The proliferation of applications and physical domains for which simulation technologies are now needed, compounded by generally increased complexity, has expanded the scope of numerical simulation and modelling within CAD and spurred new research directions. Numerical Simulation and Modelling of Electronic and Biochemical Systems provides an introduction to the fundamentals of numerical simulation, and to the basics of modelling electronic circuits and biochemical reactions. The emphasis is on capturing a minimal set of important concepts succinctly, but concretely enough that the reader will be left with an adequate foundation for further independent exploration. Starting from mathematical models of basic electronic elements, circuits are modelled as nonlinear differential-algebraic equation (DAE) systems. Two basic techniques - quiescent steady state and transient - for solving these differential equations systems are then developed. It is then shown how biochemical reactions can also be modelled deterministically as DAEs. Following this, frequency domain techniques for finding sinusoidal steady states of linear DAEs are developed, as are direct and adjoint techniques for computing parameter sensitivities and the effects of stationary random noise. For readers interested in a glimpse of topics beyond these basics, an introduction to nonlinear periodic steady state methods (harmonic balance and shooting) and the multitime partial differential equation formulation is provided. Also provided is an overview of model order reduction, an important topic of current research that has roots in numerical simulation algorithms. Finally, sample applications of nonlinear oscillator macromodels - in circuits (PLLs), biochemical reaction-diffusion systems and nanoelectronics - are presented.


Oscillations in Neural Systems

Oscillations in Neural Systems

Author: Daniel S. Levine

Publisher: Psychology Press

Published: 1999-09

Total Pages: 454

ISBN-13: 1135691908

DOWNLOAD EBOOK

Written for those interested in designing machines to perform intelligent functions & those interested in studying how these functions are performed by living organisms,this bk dicusses the mathematical structure & functional significance of neural oscil


Nonlinear Oscillations and Waves in Dynamical Systems

Nonlinear Oscillations and Waves in Dynamical Systems

Author: P.S Landa

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 550

ISBN-13: 9401587639

DOWNLOAD EBOOK

A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.


Power System Oscillations

Power System Oscillations

Author: Graham Rogers

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 1461545617

DOWNLOAD EBOOK

Power System Oscillations deals with the analysis and control of low frequency oscillations in the 0.2-3 Hz range, which are a characteristic of interconnected power systems. Small variations in system load excite the oscillations, which must be damped effectively to maintain secure and stable system operation. No warning is given for the occurrence of growing oscillations caused by oscillatory instability, since a change in the system's operating condition may cause the transition from stable to unstable. If not limited by nonlinearities, unstable oscillations may lead to rapid system collapse. Thus, it is difficult for operators to intervene manually to restore the system's stability. It follows that it is important to analyze a system's oscillatory behavior in order to understand the system's limits. If the limits imposed by oscillatory instability are too low, they may be increased by the installation of special stabilizing controls. Since the late 60s when this phenomena was first observed in North American systems, intensive research has resulted in design and installation of stabilizing controls known as power system stabilizers (PSS). The design, location and tuning of PSS require special analytical tools. This book addresses these questions in a modal analysis framework, with transient simulation as a measure of controlled system performance. After discussing the nature of the oscillations, the design of the PSS is discussed extensively using modal analysis and frequency response. In the scenario of the restructured power system, the performance of power system damping controls must be insensitive to parameter uncertainties. Power system stabilizers, when well tuned, are shown to be robust using the techniques of modern control theory. The design of damping controls, which operate through electronic power system devices (FACTS), is also discussed. There are many worked examples throughout the text. The Power System Toolbox© for use with MATLAB® is used to perform all of the analyses used in this book. The text is based on the author's experience of over 40 years as an engineer in the power industry and as an educator.