Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs)

Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs)

Author: Lian Duan

Publisher: Woodhead Publishing

Published: 2021-10-15

Total Pages: 490

ISBN-13: 0128227737

DOWNLOAD EBOOK

Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs) comprehensively introduces the history of TADF, along with a review of fundamental concepts. Then, TADF emitters with different colors, such as blue, green, red and NIR as well as white OLEDs are discussed in detail. Other sections cover exciplex-type TADF materials, emerging application of TADF emitters as a host in OLEDs, and applications of TADF materials in organic lasers and biosensing. - Discusses green, blue, red, NIR and white TADF emitters and their design strategies for improved performance for light-emitting diode applications - Addresses emerging materials, such as molecular and exciplex-based TADF materials - Includes emerging applications like lasers and biosensors


Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Charge Dynamics in Organic Semiconductors

Charge Dynamics in Organic Semiconductors

Author: Pascal Kordt

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-09-12

Total Pages: 202

ISBN-13: 3110473631

DOWNLOAD EBOOK

In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link


Organic Molecular Crystals

Organic Molecular Crystals

Author: E. Silin̦š

Publisher: American Institute of Physics

Published: 1994

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

Market: Specialists, researchers, and students in solid-state physics, materials science, electronics, chemical physics, organic and physical chemistry, and molecular biophysics. This monograph focuses on the interaction processes of excitons and charge carriers with the local environment, including the polarization and localization phenomena and the formation of polaronic quasi- particles. Transport phenomena are discussed and directly correlated with interaction dynamics, which actually determine the time- and temperature-dependent transiton of charge carriers and excitons from a coherent to a diffusive mode of motion.


Organic Light Emitting Diodes

Organic Light Emitting Diodes

Author: Luiz F. R. Pereira

Publisher: CRC Press

Published: 2012-05-29

Total Pages: 360

ISBN-13: 9814267953

DOWNLOAD EBOOK

This book addresses the development of OLEDs based on rare-earth and transition metal complexes, especially focusing on europium, terbium, ruthenium, and rhenium. The idea is to explain how these organic materials can be used to build OLEDs. Taking into account the actual state of the art and the expected pathways, the book proposes further develop


Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation

Author: Joachim Piprek

Publisher: CRC Press

Published: 2017-10-10

Total Pages: 835

ISBN-13: 149874947X

DOWNLOAD EBOOK

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.


Nanocrystal Quantum Dots

Nanocrystal Quantum Dots

Author: Victor I. Klimov

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 485

ISBN-13: 1420079271

DOWNLOAD EBOOK

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.


Polymers for Light-emitting Devices and Displays

Polymers for Light-emitting Devices and Displays

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2020-05-27

Total Pages: 288

ISBN-13: 1119654602

DOWNLOAD EBOOK

Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.


A New Generation of Organic Light-Emitting Materials and Devices

A New Generation of Organic Light-Emitting Materials and Devices

Author: Shi-Jian Su

Publisher: Frontiers Media SA

Published: 2019-11-27

Total Pages: 144

ISBN-13: 288963163X

DOWNLOAD EBOOK

Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.