Simplified Models for Dark Matter Model Building

Simplified Models for Dark Matter Model Building

Author: Anthony Paul DiFranzo

Publisher:

Published: 2016

Total Pages: 242

ISBN-13: 9781339830322

DOWNLOAD EBOOK

The largest mass component of the universe is a longstanding mystery to the physics community. As a glaring source of new physics beyond the Standard Model, there is a large effort to uncover the quantum nature of dark matter. Many probes have been formed to search for this elusive matter; cultivating a rich environment for a phenomenologist. In addition to the primary probes---colliders, direct detection, and indirect detection---each with their own complexities, there is a plethora of prospects to illuminate our unanswered questions. In this work, phenomenological techniques for studying dark matter and other possible hints of new physics will be discussed. This work primarily focuses on the use of Simplified Models, which are intended to be a compromise between generality and validity of the theoretical description. They are often used to parameterize a particular search, develop a well-defined sense of complementarity between searches, or motivate new search strategies. Explicit examples of such models and how they may be used will be the highlight of each chapter.


Simplified Models for Dark Matter Searches at the LHC.

Simplified Models for Dark Matter Searches at the LHC.

Author:

Publisher:

Published: 2015

Total Pages: 47

ISBN-13:

DOWNLOAD EBOOK

This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.


Simplified Models for Dark Matter Face Their Consistent Completions

Simplified Models for Dark Matter Face Their Consistent Completions

Author:

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.


Yet Another Introduction to Dark Matter

Yet Another Introduction to Dark Matter

Author: Martin Bauer

Publisher: Springer

Published: 2019-06-11

Total Pages: 180

ISBN-13: 3030162346

DOWNLOAD EBOOK

Dark matter is a frequently discussed topic in contemporary particle physics. Written strictly in the language of particle physics and quantum field theory, these course-based lecture notes focus on a set of standard calculations that students need in order to understand weakly interacting dark matter candidates. After introducing some general features of these dark matter agents and their main competitors, the Higgs portal scalar and supersymmetric neutralinos are introduced as our default models. In turn, this serves as a basis for exploring four experimental aspects: the dark matter relic density extracted from the cosmic microwave background; indirect detection including the Fermi galactic center excess; direct detection; and collider searches. Alternative approaches, like an effective theory of dark matter and simplified models, naturally follow from the discussions of these four experimental directions.


An Approach to Dark Matter Modelling

An Approach to Dark Matter Modelling

Author: Tanushree Basak

Publisher: Morgan & Claypool Publishers

Published: 2018-09-05

Total Pages: 63

ISBN-13: 1643271326

DOWNLOAD EBOOK

In the field of particle and astrophysics, one of the major unresolved problems is to understand the nature and properties of dark matter, which constitutes almost 80% of the matter content of the universe. This book gives a pedagogical introduction to the field of dark matter in general, and in particular to the model building perspective. Starting from the evidence and need for dark matter, it goes into the deeper understanding of how to accommodate a dark matter candidate in a particle physics model. This book focuses on teaching the basic tools for model building of dark matter, starting from the easiest to gradually the difficult one. Although there are plenty of dark matter models available in the literature, this book concentrates on the important ones. This book aims to motivate the reader to propose a new dark matter model complying with all observational constraints.


Search for Dark Matter with the ATLAS Detector

Search for Dark Matter with the ATLAS Detector

Author: Johanna Gramling

Publisher: Springer

Published: 2018-08-01

Total Pages: 290

ISBN-13: 3319950169

DOWNLOAD EBOOK

This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.


An Introduction To Particle Dark Matter

An Introduction To Particle Dark Matter

Author: Stefano Profumo

Publisher: World Scientific Publishing Company

Published: 2017-02-23

Total Pages: 287

ISBN-13: 1786340038

DOWNLOAD EBOOK

What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics experiments, cosmological observations, and high-energy astrophysical phenomena: from graduate students and advanced undergraduates to cosmologists and astrophysicists interested in particle models for dark matter and particle physicists interested in early-universe cosmology and high-energy astrophysics.


Dark Matter Phenomenology

Dark Matter Phenomenology

Author: Mathias Pierre

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

One of the most puzzling problems of modern physics is the identification of the nature a non-relativistic matter component present in the universe, contributing to more than 25% of the total energy budget, known as Dark Matter. Weakly Interacting Massive Particles (WIMPs) are among the best motivated dark matter candidates. However, in light of non conclusive detection signals and strong constraints from collider, direct and indirect detection experiments, this thesis presents constraints on several realizations of the WIMP paradigm in the context of simplified dark matter models. More elaborated models considering extended gauge structures are discussed further on, such as constructions involving generalized Chern-Simons couplings and a specific WIMP scenario motivated by some recently observed flavor anomalies related to the RK(*) observable. The second part of this thesis is devoted to the discussion of an alternative dark matter thermal production mechanism where an explicit realization of the Strongly Interacting Massive Particles (SIMPs) paradigm is discussed in the context of a non-Abelian hidden gauge structure. In a last part, the possibility of producing non-thermally a dark matter component via the "freeze-in" mechanism was investigated and the strong impact of the postinationary reaheating stage of the universe on such constructions illustrated by the specific case where dark matter density production is mediated by a heavy spin-2 field in addition to the standard graviton.