Stochastic Decomposition

Stochastic Decomposition

Author: Julia L. Higle

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 237

ISBN-13: 1461541158

DOWNLOAD EBOOK

Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.


Water Resource Systems Planning and Management

Water Resource Systems Planning and Management

Author: Daniel P. Loucks

Publisher: Springer

Published: 2017-03-02

Total Pages: 635

ISBN-13: 3319442341

DOWNLOAD EBOOK

This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.


Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning

Author: Carl Edward Rasmussen

Publisher: MIT Press

Published: 2005-11-23

Total Pages: 266

ISBN-13: 026218253X

DOWNLOAD EBOOK

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.


Multi-Objective Programming and Goal Programming

Multi-Objective Programming and Goal Programming

Author: Mehrdad Tamiz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 365

ISBN-13: 3642875610

DOWNLOAD EBOOK

Most real-life problems involve making decisions to optimally achieve a number of criteria while satisfying some hard or soft constraints. In this book several methods for solving such problems are presented by the leading experts in the area. The book also contains a number of very interesting application papers which demonstrate theoretical modelling, analysing and solution of real-life problems.


Introduction to Stochastic Programming

Introduction to Stochastic Programming

Author: John R. Birge

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 427

ISBN-13: 0387226184

DOWNLOAD EBOOK

This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.


Stochastic Optimization

Stochastic Optimization

Author: Kurt Marti

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 189

ISBN-13: 3642882676

DOWNLOAD EBOOK

This volume includes a selection of refereed papers presented at the GAMM/IFIP-Workshop on "Stochastic Optimization: Numerical Methods and Technical Applications", held at the Federal Armed Forces University Munich, May 29 - 31, 1990. The objective of this meeting was to bring together scientists from Stochastic Programming and from those Engineering areas, where Mathematical Programming models are common tools, as e. g. Optimal Structural Design, Power Dispatch, Acid Rain Management etc. The first, theoretical part includes the papers by S. D. Flam. H. Niederreiter, E. Poechinger and R. Schultz. The second part on methods and applications contains the articles by N. Baba, N. Grwe and W. Roemisch, J. Mayer, E. A. Mc Bean and A. Vasarhelyi.


Smart Delivery Systems

Smart Delivery Systems

Author: Jakub Nalepa

Publisher: Elsevier

Published: 2019-11-21

Total Pages: 290

ISBN-13: 0128157151

DOWNLOAD EBOOK

Smart Delivery Systems: Solving Complex Vehicle Routing Problems examines both exact and approximate methods for delivering optimal solutions to rich vehicle routing problems, showing both the advantages and disadvantages of each approach. It shows how to apply machine learning and advanced data analysis techniques to improve routing systems, familiarizing readers with the concepts and technologies used in successfully implemented delivery systems. The book explains both the latest theoretical and practical advances in intelligent delivery and scheduling systems and presents practical applications for designing new algorithms for real-life scenarios.


Contrasts and Effect Sizes in Behavioral Research

Contrasts and Effect Sizes in Behavioral Research

Author: Robert Rosenthal

Publisher: Cambridge University Press

Published: 2000

Total Pages: 224

ISBN-13: 9780521659802

DOWNLOAD EBOOK

Contrasts are statistical procedures for asking focused questions of data. Compared to diffuse or omnibus questions, focused questions are characterized by greater conceptual clarity and greater statistical power when examining those focused questions. If an effect truly exists, we are more likely to discover it and to believe it to be real when asking focused questions rather than omnibus ones. Researchers, teachers of research methods and graduate students will be familiar with the principles and procedures of contrast analysis, but will also be introduced to a series of newly developed concepts, measures, and indices that permit a wider and more useful application of contrast analysis. This volume takes on this new approach by introducing a family of correlational effect size estimates.


An Epsilon of Room, II

An Epsilon of Room, II

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 258

ISBN-13: 0821852809

DOWNLOAD EBOOK

A step-by-step guide to successfully transforming any organization It is well recognized that succeeding at innovation is fundamental in today's hyper-competitive global marketplace. It is the only way to outperform current and emerging competitors sustainably. But what we call "innovation" is messy and difficult and too often lacks the rigor and discipline of other management processes. "The Innovator's Field Guide: Market Tested Methods and Frameworks to Help You Meet Your Innovation Challenges" changes that. It is a practical guide that moves beyond the "why" to the "how" of making innovation happen, for leaders and practitioners inside organizations of all sizes. Written by two pioneers in the field of embedding innovation in organization, "The Innovator's Field Guide" focuses on the most pressing innovation problems and specific challenges innovation leaders will face and offers concrete solutions, tools, and methods to overcome them.Each chapter describes a specific innovation challenge and details proven ways to address that challengeIncludes practical ideas, techniques, and leading practicesDescribes common obstacles and offers practical solutions Any leader or professional who needs concrete solutions--right now--to the critical challenges of innovation will find invaluable aid in the practical, easy-to-understand, and market-tested approaches of "The Innovator's Field Guide."