Two-phase microchannel cooling is one of the most promising thermal-management technologies for future high-power IC chips. Understanding the boiling process and the two-phase-flow behavior in microchannels is the key to successful implementation of a microchannel heat sink. This book focuses on the phase-change phenomena and the heat transfer in sub-150 nm diameter silicon microchannels, with emphasis on thermal measurement and modeling, and the impact of small dimensions on two-phase flow regimes.
Seemingly universal geometric forms unite the flow systems of engineering and nature. For example, tree-shaped flows can be seen in computers, lungs, dendritic crystals, urban street patterns, and communication links. In this groundbreaking book, Adrian Bejan considers the design and optimization of engineered systems and discovers a deterministic principle of the generation of geometric form in natural systems. Shape and structure spring from the struggle for better performance in both engineering and nature. This idea is the basis of the new constructal theory: the objective and constraints principle used in engineering is the same mechanism from which the geometry in natural flow systems emerges. From heat exchangers to river channels, the book draws many parallels between the engineered and the natural world. Among the topics covered are mechanical structure, thermal structure, heat trees, ducts and rivers, turbulent structure, and structure in transportation and economics. The numerous illustrations, examples, and homework problems in every chapter make this an ideal text for engineering design courses. Its provocative ideas will also appeal to a broad range of readers in engineering, natural sciences, economics, and business.
In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature. Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.
This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source. You get full details on state-of-the-art I/O interconnects and packaging, including mechanically compliant I/O approaches, fabrication, and assembly, followed by the latest advances and applications in power delivery design, analysis, and modeling. The book explores interconnect structures, materials, and packages for achieving high-bandwidth off-chip electrical communication, including optical interconnects and chip-to-chip signaling approaches, and brings you up to speed on CMOS integrated optical devices, 3D integration, wafer stacking technology, and through-wafer interconnects.
&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.
Liquid Cooling of Electronic Devices by Single-Phase Convection offers the first comprehensive and in-depth coverage of liquid convection as it applies to state-of-the-art thermal management systems. In this book, Dr. Incropera culls ten years of research results, clarifies the physical mechanisms associated with single-phase convection in the context of electronic cooling, and provides working engineers with a solid foundation for the design and development of rational liquid cooling systems. For those involved in designing these products - mechanical and electrical engineers, electronic packaging engineers, technical staff, and others - this book provides an invaluable road map to meet the challenge.
This comprehensive book focuses on the basic physical features and purpose of nanofluids and miniature heat sinks. The contents demonstrate the design modification, fabrication, experimental investigation, and various applications of miniature heat sinks. The book provides context for thermal performance of miniature heat sinks as well as summaries of experimental results correlations that reflect the current technical innovations are included. This book is a useful reference for both academia and industry alike.
This book is a comprehensive guide on emerging cooling technologies for processors in microelectronics. It covers various topics such as chip-embedded two-phase cooling, monolithic microfluidic cooling, numerical modeling, and advances in materials engineering for conduction-limited direct contact cooling, with a goal to remedy high heat flux issues.The book also discusses the co-design of thermal and electromagnetic properties for the development of light and ultra-high efficiency electric motors. It provides an in-depth analysis of the scaling limits, challenges, and opportunities in embedded cooling, including high power RF amplifiers and self-emissive and liquid crystal displays. Its analysis of emerging cooling technologies provides a roadmap for the future of cooling technology in microelectronics.This book is a good starting point for the electrical and thermal engineers, as well as MS and PhD students, interested in understanding and collaboratively tackling the complex and multidisciplinary field of microelectronics device (embedded) cooling. A basic knowledge of heat conduction and convection is required.
This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.