Sonar, radar and laser radar have evolved to the point where many commercial, scientific and military applications exist for these sensing systems. Each of these sensors involves problems peculiar to themselves. Deals with solutions to the problems currently associated with signal detection by the application of a variety of subsets of Communication and Estimation Theory. Covers such topics as noise and random processes; noise statistics; how to detect signals in noise; waveform analysis; non-coherent detection of a single pulse and more.
"Integrates a broad range of physics, algorithms, and sensing techniques for development of intelligent systems. Highlights adaptive least-squared error modeling. Covers complex sampling, physical system modeling using digital filters, frequency domain processing, beamforming, and much more."
Signal Processing for Intelligent Sensors with MATLAB®, Second Edition once again presents the key topics and salient information required for sensor design and application. Organized to make it accessible to engineers in school as well as those practicing in the field, this reference explores a broad array of subjects and is divided into sections: Fundamentals of Digital Signal Processing, Frequency Domain Processing, Adaptive System Identification and Filtering, Wavenumber Sensor Systems, and Signal Processing Applications. Taking an informal, application-based approach and using a tone that is more engineer-to-engineer than professor-to-student, this revamped second edition enhances many of the features that made the original so popular. This includes retention of key algorithms and development methodologies and applications, which are creatively grouped in a way that differs from most comparable texts, to optimize their use. New for the Second Edition: Inclusion of more solved problems Web access to a large collection of MATLAB® scripts used to support data graphs presented throughout the book Additional coverage of more audio engineering, transducers, and sensor networking technology A new chapter on Digital Audio processing reflects a growing interest in digital surround sound (5.1 audio) techniques for entertainment, home theaters, and virtual reality systems New sections on sensor networking, use of meta-data architectures using XML, and agent-based automated data mining and control Serving dual roles as both a learning resource and a field reference on sensor system networks, this book progressively reveals digestible nuggets of critical information to help readers quickly master presented algorithms and adapt them to meet their requirements. It illustrates the current trend toward agile development of web services for wide area sensor networking and intelligent processing in the sensor system networks that are employed in homeland security, business, and environmental and demographic information systems.
Building on the unique features that made the first edition a bestseller, this second edition includes additional solved problems and web access to the large collection of MATLABTM scripts that are highlighted throughout the text. The book offers expanded coverage of audio engineering, transducers, and sensor networking technology. It also includes new chapters on digital audio processing, as well as acoustics and vibrations transducers. The text addresses the use of meta-data architectures using XML and agent-based automated data mining and control. The numerous algorithms presented can be applied locally or network-based to solve complex detection problems.
This cutting-edge book is a clear and thorough exposition of signal-processing fundamentals for communications and major sensing systems. Based on the author's earlier book in this area, this revised and expanded resource offers you expert guidance in the detection of optical, acoustic and radio-frequency signals in noise. It covers digital filtering and parameter estimation, and helps you with problems associated with radar system design, including search, tracking and measurement ambiguity.
This book describes recent work on active sensors for mobile robots. An active sensor interacts with its surroundings to supply data on demand for a particular function, gathering and abstracting information according to need rather than acting as a generic data gatherer. Details of the physical operation are hidden. The book deals mainly with active range sensors, which provide rapid information for local planning, describing extraction of two-dimensional features such as lines, corners and cylinders to reconstruct a plan of a building. It is structured according to the physical principles of the sensors, since to a large extent these determine the function of the sensors and the methods of processing. Recent work using sonar, optoelectronic sensors and radar is described. Sections on vision and on sensor management develop the idea of software adaptation for efficient operation in a changing environment. Contents: The Mapping and Localisation Problem; Perception at Millimetre Wavelengths; Advanced Sonar: Principles of Operation and Interpretation; Smooth and Rough Target Modelling: Examples in Mapping and Texture Classification; Sonar Systems: A Biological Perspective; Map Building from Range Data Using Mathematical Morphology; Millimetre Wave Radar for Robotics; Optoelectronic Range Sensors; AMCW LIDAR Range Acquisition; Extracting Lines and Curves from Optoelectronic Range Data; Active Vision for Mobile Robot Navigation; Strategies for Active Sensor Management. Readership: Graduate students and final year undergraduate students in electrical and electronic engineering, systems and knowledge, robotics, image processing and artificial intelligence.
From traditional topics that form the core of industrial electronics, to new and emerging concepts and technologies, The Industrial Electronics Handbook, in a single volume, has the field covered. Nowhere else will you find so much information on so many major topics in the field. For facts you need every day, and for discussions on topics you have only dreamed of, The Industrial Electronics Handbook is an ideal reference.
Integrating active control of both sound and vibration, this comprehensive two-volume set combines coverage of fundamental principles with the most recent theoretical and practical developments. The authors explain how to design and implement successful active control systems in practice and detail the pitfalls one must avoid to ensure a reliable and stable system. Extensively revised, updated, and expanded throughout, the second edition reflects the advances that have been made in algorithms, DSP hardware, and applications since the publication of the first edition.
This book documents the state-of-the-art evaluation of the embryonic field of multifunctional materials and adaptive structures, more specifically in the area of active vibration suppression, shape control, noise attenuation, structural health monitoring, smart machines and micro-electro-mechanical systems with application in aircraft, aerospace, automobile, civil structures and consumer industry.
Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems, Second Edition offers comprehensive coverage of basic concepts and fundamentals, building up to advanced instruction on the latest technology coming to market for medium- and heavy-duty trucks and buses. This industry-leading Second Edition includes six new chapters that reflect state-of-the-art technological innovations, such as distributed electronic control systems, energy-saving technologies, and automated driver-assistance systems.