Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

Author: Rajesh Kumar Tripathy

Publisher: Elsevier

Published: 2024-06-12

Total Pages: 186

ISBN-13: 0443141401

DOWNLOAD EBOOK

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications


Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Author: Abdulhamit Subasi

Publisher: Academic Press

Published: 2019-03-16

Total Pages: 458

ISBN-13: 0128176733

DOWNLOAD EBOOK

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series


Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Author: Nilanjan Dey

Publisher: Academic Press

Published: 2018-11-30

Total Pages: 348

ISBN-13: 012816087X

DOWNLOAD EBOOK

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains


Advanced Methods and Tools for ECG Data Analysis

Advanced Methods and Tools for ECG Data Analysis

Author: Gari D. Clifford

Publisher: Artech House Publishers

Published: 2006

Total Pages: 412

ISBN-13:

DOWNLOAD EBOOK

This practical book is the first one-stop resource to offer a thorough, up-to-date treatment of the techniques and methods used in electrocardiogram (ECG) data analysis, from fundamental principles to the latest tools in the field. The book places emphasis on the selection, modeling, classification, and interpretation of data based on advanced signal processing and artificial intelligence techniques.


ECG Signal Processing, Classification and Interpretation

ECG Signal Processing, Classification and Interpretation

Author: Adam Gacek

Publisher: Springer Science & Business Media

Published: 2011-09-18

Total Pages: 283

ISBN-13: 0857298682

DOWNLOAD EBOOK

The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; detailed schemes, exercises and more advanced problems.


Applications of Machine Learning

Applications of Machine Learning

Author: Prashant Johri

Publisher: Springer Nature

Published: 2020-05-04

Total Pages: 404

ISBN-13: 9811533571

DOWNLOAD EBOOK

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.


The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis

The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis

Author: Jinming Duan

Publisher: Frontiers Media SA

Published: 2024-06-11

Total Pages: 165

ISBN-13: 2832550193

DOWNLOAD EBOOK

With the availability of big image datasets and state-of-the-art computing hardware, data-driven machine learning approaches, particularly deep learning, have been used in numerous medical image (CT-scans, MRI, PET, SPECT, etc..) computing tasks, ranging from image reconstruction, super-resolution, segmentation, registration all the way to disease classification and survival prediction. However, training such high-precision approaches often require large amounts of data to be collected and labelled and high-capacity graphics processing units (GPUs) installed, which are resource intensive and hence not always practical. Other hurdles such as the generalization ability to unseen new data and difficulty to interpret and explain can prevent their deployment to those clinical applications which deem such abilities imperative.


Intelligence-Based Cardiology and Cardiac Surgery

Intelligence-Based Cardiology and Cardiac Surgery

Author: Anthony C Chang

Publisher: Elsevier

Published: 2023-09-06

Total Pages: 542

ISBN-13: 032390629X

DOWNLOAD EBOOK

Intelligence-Based Cardiology and Cardiac Surgery: Artificial Intelligence and Human Cognition in Cardiovascular Medicine provides a comprehensive survey of artificial intelligence concepts and methodologies with real-life applications in cardiovascular medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and data science domains. The book's content consists of basic concepts of artificial intelligence and human cognition applications in cardiology and cardiac surgery. This portfolio ranges from big data, machine and deep learning, cognitive computing and natural language processing in cardiac disease states such as heart failure, hypertension and pediatric heart care. The book narrows the knowledge and expertise chasm between the data scientists, cardiologists and cardiac surgeons, inspiring clinicians to embrace artificial intelligence methodologies, educate data scientists about the medical ecosystem, and create a transformational paradigm for healthcare and medicine. - Covers a wide range of relevant topics from real-world data, large language models, and supervised machine learning to deep reinforcement and federated learning - Presents artificial intelligence concepts and their applications in many areas in an easy-to-understand format accessible to clinicians and data scientists - Discusses using artificial intelligence and related technologies with cardiology and cardiac surgery in a myriad of venues and situations - Delineates the necessary elements for successfully implementing artificial intelligence in cardiovascular medicine for improved patient outcomes - Presents the regulatory, ethical, legal, and financial issues embedded in artificial intelligence applications in cardiology


Digital Transformation in Healthcare 5.0

Digital Transformation in Healthcare 5.0

Author: Rishabha Malviya

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-05-06

Total Pages: 409

ISBN-13: 3111327868

DOWNLOAD EBOOK

"Digital Transformation in Healthcare 5.0: IoT, AI, and Digital Twin" provides a comprehensive overview of the integration of cutting-edge technology with healthcare, from the Fourth Industrial Revolution (4IR) to the introduction of IoT, AI, and Digital Twin technologies. This in-depth discussion of the digital revolution expanding the healthcare industry covers a wide range of topics, including digital disruption in healthcare delivery, the impact of 4IR and Health 4.0, e-health services and applications, virtual reality's impact on accessible healthcare delivery, digital twins and dietary health technologies, big data analytics in healthcare systems, machine learning models for cost-effective healthcare delivery systems, affordable healthcare with machine learning, enhanced biomedical signal processing with machine learning, and data-driven AI for information retrieval of biomedical images.


Advanced Machine Intelligence and Signal Processing

Advanced Machine Intelligence and Signal Processing

Author: Deepak Gupta

Publisher: Springer Nature

Published: 2022-06-25

Total Pages: 859

ISBN-13: 9811908400

DOWNLOAD EBOOK

This book covers the latest advancements in the areas of machine learning, computer vision, pattern recognition, computational learning theory, big data analytics, network intelligence, signal processing, and their applications in real world. The topics covered in machine learning involve feature extraction, variants of support vector machine (SVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. The mathematical analysis of computer vision and pattern recognition involves the use of geometric techniques, scene understanding and modeling from video, 3D object recognition, localization and tracking, medical image analysis, and so on. Computational learning theory involves different kinds of learning like incremental, online, reinforcement, manifold, multitask, semi-supervised, etc. Further, it covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. Additionally, it covers the recent developments to network intelligence for analyzing the network information and thereby adapting the algorithms dynamically to improve the efficiency. In the last, it includes the progress in signal processing to process the normal and abnormal categories of real-world signals, for instance signals generated from IoT devices, smart systems, speech, videos, etc., and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), and electromyogram (EMG).