Ship-shaped offshore units are some of the more economical systems for the development of offshore oil and gas, and are often preferred in marginal fields. These systems are especially attractive to develop oil and gas fields in deep and ultra-deep water areas and remote locations away from existing pipeline infrastructures. Recently, the ship-shaped offshore units have been applied to near shore oil and gas terminals. This 2007 text is an ideal reference on the technologies for design, building and operation of ship-shaped offshore units, within inevitable space requirements. The book includes a range of topics, from the initial contracting strategy to decommissioning and the removal of the units concerned. Coverage includes both fundamental theory and principles of the individual technologies. This book will be useful to students who will be approaching the subject for the first time as well as designers working on the engineering for ship-shaped offshore installations.
KEY FEATURES: - Provides researchers in Ocean engineering with a thorough review of the latest research in the field - Lengthy reports by leading experts - A valuable resource for all interested in ocean engineering DESCRIPTION:The International Ship and Offshore Congress (ISSC) is a forum for the exchange of information by experts undertaking and applying marine structural research. These three volumes contain the eight technical committee reports, six Specialist Committee and 2 Special Task Committee reports which were presented for the 15th International Ship and Offshore Structures Congress (ISSC 2004) in San Diego USA, between 11th and 15th August 2003. Volume III will be published in 2004 and is to contain the discussion of the reports, the chairmen's reply, the text of the invited Lecture and the congress report of ISSC 2003.
The volatile, uncertain, complex, and ambiguous (VUCA) nature of environmental and operational conditions is still the major cause of marine accidents, with knock-on effects in terms of casualties, property damage, and marine pollution. Recognized as the most effective approach to navigate VUCA environments, risk-based assessment methods provide a solution to address challenges associated with health, safety, and environmental protection in extreme conditions and when accidents involving engineering structures and infrastructure occur. This book serves as a comprehensive guide to the foundational principles, current practices, and cuttingedge trends in quantitative risk assessment and management for ships and offshore structures. With six partsencompassing a total of 35 chapters, it covers risk assessment and management for offshore installations, oil and gas leaks, collisions and grounding, and fires and explosions. Tailored for ship and offshore structural engineers, naval architects, as well as mechanical and civil engineers involved in advanced safety studies, this book is an invaluable resource for both practicing engineers and researchers in this field.• Offers insights into quantitative risk assessment and asset management for ships and offshore structures inextreme conditions and in the event of accidents• Equips engineers with valuable statistical data sets and enhances data assimilation techniques for precisehazard frequency calculations• Seamlessly integrates fundamental principles with practical applications, addressing emerging challengesand leveraging the latest technological advances in the field
In recent years significant advances have been made in the development of methods and modeling procedures for structural assessment of marine structures. Various assessment methods are incorporated in the methods used to analyze and design efficient ship structures, as well as in the methods of structural reliability to be used to ensure the safety
This three-volume work presents the proceedings from the 19th International Ship and Offshore Structures Congress held in Cascais, Portugal on 7th to 10th September 2015. The International Ship and Offshore Structures Congress (ISSC) is a forum for the exchange of information by experts undertaking and applying marine structural research.The aim of
Reviews and describes both the fundamental and practical design procedures for the ultimate limit state design of ductile steel plated structures The new edition of this well-established reference reviews and describes both fundamentals and practical design procedures for steel plated structures. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying expressions and solution methods. Furthermore, this book is also an easily accessed design tool, which facilitates learning by applying the concepts of the limit states for practice using a set of computer programs, which can be downloaded. Ultimate Limit State Design of Steel Plated Structures provides expert guidance on mechanical model test results as well as nonlinear finite element solutions, sophisticated design methodologies useful for practitioners in industries or research institutions, and selected methods for accurate and efficient analyses of nonlinear behavior of steel plated structures both up to and after the ultimate strength is reached. Covers recent advances and developments in the field Includes new topics on constitutive equations of steels, test database associated with low/elevated temperature, and strain rates Includes a new chapter on a semi-analytical method Supported by a companion website with illustrative example data sheets Provides results for existing mechanical model tests Offers a thorough discussion of assumptions and the validity of underlying expressions and solution methods Designed as both a textbook and a handy reference, Ultimate Limit State Design of Steel Plated Structures, Second Edition is well suited to teachers and university students who are approaching the limit state design technology of steel plated structures for the first time. It also meets the needs of structural designers or researchers who are involved in civil, marine, and mechanical engineering as well as offshore engineering and naval architecture.
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
A comprehensive overview of managing and assessing safety and functionality of ageing offshore structures and pipelines A significant proportion, estimated at over 50%, of the worldwide infrastructure of offshore structures and pipelines is in a life extension phase and is vulnerable to ageing processes. This book captures the central elements of the management of ageing offshore structures and pipelines in the life extension phase. The book gives an overview of: the relevant ageing processes and hazards; how ageing processes are managed through the life cycle, including an overview of structural integrity management; how an engineer should go about assessing a structure that is to be operated beyond its original design life, and how ageing can be mitigated for safe and effective continued operation. Key Features: Provides an understanding of ageing processes and how these can be mitigated. Applies engineering methods to ensure that existing structures can be operated longer rather than decommissioned unduly prematurely. Helps engineers performing these tasks in both evaluating the existing structures and maintaining ageing structures in a safe manner. The book gives an updated summary of current practice and research on the topic of the management of ageing structures and pipelines in the life extension phase but also meets the needs of structural engineering students and practicing offshore and structural engineers in oil & gas and engineering companies. In addition, it should be of value to regulators of the offshore industry.