Shape Classification and Analysis

Shape Classification and Analysis

Author: Luciano da Fona Costa

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 693

ISBN-13: 0849379407

DOWNLOAD EBOOK

Because the properties of objects are largely determined by their geometric features, shape analysis and classification are essential to almost every applied scientific and technological area. A detailed understanding of the geometrical features of real-world entities (e.g., molecules, organs, materials and components) can provide important clues about their origin and function. When properly and carefully applied, shape analysis offers an exceedingly rich potential to yield useful applications in diverse areas ranging from material sciences to biology and neuroscience. Get Access to the Authors’ Own Cutting-Edge Open-Source Software Projects—and Then Actually Contribute to Them Yourself! The authors of Shape Analysis and Classification: Theory and Practice, Second Edition have improved the bestselling first edition by updating the tremendous progress in the field. This exceptionally accessible book presents the most advanced imaging techniques used for analyzing general biological shapes, such as those of cells, tissues, organs, and organisms. It implements numerous corrections and improvements—many of which were suggested by readers of the first edition—to optimize understanding and create what can truly be called an interactive learning experience. New Material in This Second Edition Addresses Graph and complex networks Dimensionality reduction Structural pattern recognition Shape representation using graphs Graphically reformulated, this edition updates equations, figures, and references, as well as slides that will be useful in related courses and general discussion. Like the popular first edition, this text is applicable to many fields and certain to become a favored addition to any library. Visit http://www.vision.ime.usp.br/~cesar/shape/ for Useful Software, Databases, and Videos


Shape Analysis and Classification

Shape Analysis and Classification

Author: Luciano da Fontoura Costa

Publisher: CRC Press

Published: 2010-12-12

Total Pages: 688

ISBN-13: 9781420037555

DOWNLOAD EBOOK

Advances in shape analysis impact a wide range of disciplines, from mathematics and engineering to medicine, archeology, and art. Anyone just entering the field, however, may find the few existing books on shape analysis too specific or advanced, and for students interested in the specific problem of shape recognition and characterization, traditio


Shape Analysis in Medical Image Analysis

Shape Analysis in Medical Image Analysis

Author: Shuo Li

Publisher: Springer Science & Business Media

Published: 2014-01-28

Total Pages: 441

ISBN-13: 3319038133

DOWNLOAD EBOOK

This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as for example, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computational vision, computer sciences, human motion, mathematics, medical imaging, medicine, pattern recognition and physics.


Image Analysis and Recognition

Image Analysis and Recognition

Author: Aurélio Campilho

Publisher: Springer Science & Business Media

Published: 2004-09-23

Total Pages: 888

ISBN-13: 3540232400

DOWNLOAD EBOOK

ICIAR 2004, the International Conference on Image Analysis and Recognition, was the ?rst ICIAR conference, and was held in Porto, Portugal. ICIAR will be organized annually, and will alternate between Europe and North America. ICIAR 2005 will take place in Toronto, Ontario, Canada. The idea of o?ering these conferences came as a result of discussion between researchers in Portugal and Canada to encourage collaboration and exchange, mainly between these two countries, but also with the open participation of other countries, addressing recent advances in theory, methodology and applications. The response to the call for papers for ICIAR 2004 was very positive. From 316 full papers submitted, 210 were accepted (97 oral presentations, and 113 - sters). The review process was carried out by the Program Committee members and other reviewers; all are experts in various image analysis and recognition areas. Each paper was reviewed by at least two reviewing parties. The high q- lity of the papers in these proceedings is attributed ?rst to the authors, and second to the quality of the reviews provided by the experts. We would like to thank the authors for responding to our call, and we wholeheartedly thank the reviewers for their excellent work in such a short amount of time. We are espe- ally indebted to the Program Committee for their e?orts that allowed us to set up this publication. We were very pleased to be able to include in the conference, Prof. Murat KuntfromtheSwissFederalInstituteofTechnology,andProf. Mario ́ Figueiredo, oftheInstitutoSuperiorT ́ ecnico,inPortugal.


Shape in Medical Imaging

Shape in Medical Imaging

Author: Martin Reuter

Publisher: Springer Nature

Published: 2020-10-02

Total Pages: 160

ISBN-13: 303061056X

DOWNLOAD EBOOK

This book constitutes the proceedings of the International Workshop on Shape in Medical Imaging, ShapeMI 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assistend Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, but changed to a virtual format due to the COVID-19 pandemic. The 12 full papers included in this volume were carefully reviewed and selected from 18 submissions. They were organized in topical sections named: methods; learning; and applications.


Sorting Things Out

Sorting Things Out

Author: Geoffrey C. Bowker

Publisher: MIT Press

Published: 2000-08-25

Total Pages: 390

ISBN-13: 0262522950

DOWNLOAD EBOOK

A revealing and surprising look at how classification systems can shape both worldviews and social interactions. What do a seventeenth-century mortality table (whose causes of death include "fainted in a bath," "frighted," and "itch"); the identification of South Africans during apartheid as European, Asian, colored, or black; and the separation of machine- from hand-washables have in common? All are examples of classification—the scaffolding of information infrastructures. In Sorting Things Out, Geoffrey C. Bowker and Susan Leigh Star explore the role of categories and standards in shaping the modern world. In a clear and lively style, they investigate a variety of classification systems, including the International Classification of Diseases, the Nursing Interventions Classification, race classification under apartheid in South Africa, and the classification of viruses and of tuberculosis. The authors emphasize the role of invisibility in the process by which classification orders human interaction. They examine how categories are made and kept invisible, and how people can change this invisibility when necessary. They also explore systems of classification as part of the built information environment. Much as an urban historian would review highway permits and zoning decisions to tell a city's story, the authors review archives of classification design to understand how decisions have been made. Sorting Things Out has a moral agenda, for each standard and category valorizes some point of view and silences another. Standards and classifications produce advantage or suffering. Jobs are made and lost; some regions benefit at the expense of others. How these choices are made and how we think about that process are at the moral and political core of this work. The book is an important empirical source for understanding the building of information infrastructures.


Elastic Shape Analysis of Three-Dimensional Objects

Elastic Shape Analysis of Three-Dimensional Objects

Author: Ian H. Jermyn

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 169

ISBN-13: 3031018192

DOWNLOAD EBOOK

Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in ℝ, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L2 metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.