Today, there is increasing interest in complex geometry, geometric function theory, and integral representation theory of several complex variables. The present collection of survey and research articles comprises a current overview of research in several complex variables in China. Among the topics covered are singular integrals, function spaces, differential operators, and factorization of meromorphic functions in several complex variables via analytic or geometric methods. Some results are reported in English for the first time.
In recent years there has been increasing interaction among various branches of mathematics. This is especially evident in the theory of several complex variables where fruitful interplays of the methods of algebraic geometry, differential geometry, and partial differential equations have led to unexpected insights and new directions of research. In China there has been a long tradition of study in complex analysis, differential geometry and differential equations as interrelated subjects due to the influence of Professors S. S. Chern and L. K. Hua. After a long period of isolation, in recent years there is a resurgence of scientific activity and a resumption of scientific exchange with other countries. The Hangzhou conference is the first international conference in several complex variables held in China. It offered a good opportunity for mathematicians from China, U.S., Germany, Japan, Canada, and France to meet and to discuss their work. The papers presented in the conference encompass all major aspects of several complex variables, in particular, in such areas as complex differential geometry, integral representation, boundary behavior of holomorphic functions, invariant metrics, holomorphic vector bundles, and pseudoconvexity. Most of the participants wrote up their talks for these proceedings. Some of the papers are surveys and the others present original results. This volume constitutes an overview of the current trends of research in several complex variables.
The papers in this volume cover many important topics of current interest in partial differential equations and several complex variables. An international group of well-known mathematicians has contributed original research articles on diverse topics such as the geometry of complex manifolds, the mean curvature equation, formal solutions of singular partial differential equations, and complex vector fields. The material in this volume is useful for graduate students and researchers interested in partial differential equations and several complex variables.
"These papers, originally presented at the first international conference in several complex variables held in China, cover complex differential geometry, integral representation, boundary behavior of holomorphic functions, invariant metrics, holomorphic vector bundles, and pseudoconvexity."--Publisher.
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
This is the 1st China's Science Yearbook published since 1949. It covers events, activities and progresses in various fields of science and technology from 1949 to 1979. Published in conjunction with Shanghai Scientific Publishing Co., it was compiled and edited by a research team from 'Nature Magazine', Shanghai, People's Republic of China.
Early one morning in April of 1987, the Chinese mathematician J. -Q. Zhong died unexpectedly of a heart attack in New York. He was then near the end of a one-year visit in the United States. When news of his death reached his Chinese-American friends, it was immediately decided by one and all that something should be done to preserve his memory. The present volume is an outgrowth of this sentiment. His friends in China have also established a Zhong Jia-Qing Memorial Fund, which has since twice awarded the Zhong Jia-Qing prizes for Chinese mathematics graduate students. It is hoped that at least part of the reasons for the esteem and affection in which he was held by all who knew him would come through in the succeeding pages of this volume. The three survey chapters by Li and Treibergs, Lu, and Siu (Chapters 1-3) all center around the areas of mathematics in which Zhong made noteworthy contributions. In addition to putting Zhong's mathematical contributions in perspective, these articles should be useful also to a large segment of the mathematical community; together they give a coherent picture of a sizable portion of contemporary geometry. The survey of Lu differs from the other two in that it gives a firsthand account of the work done in the People's Republic of China in several complex variables in the last four decades.
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.