Sets, Logic and Categories

Sets, Logic and Categories

Author: Peter J. Cameron

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 191

ISBN-13: 1447105893

DOWNLOAD EBOOK

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.


Sets, Logic and Categories

Sets, Logic and Categories

Author: Peter J. Cameron

Publisher: Springer Science & Business Media

Published: 1999-01-22

Total Pages: 196

ISBN-13: 9781852330569

DOWNLOAD EBOOK

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.


Set Theory and Logic

Set Theory and Logic

Author: Robert R. Stoll

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 516

ISBN-13: 0486139646

DOWNLOAD EBOOK

Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.


Basic Category Theory

Basic Category Theory

Author: Tom Leinster

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 193

ISBN-13: 1107044243

DOWNLOAD EBOOK

A short introduction ideal for students learning category theory for the first time.


Categorical Logic and Type Theory

Categorical Logic and Type Theory

Author: B. Jacobs

Publisher: Gulf Professional Publishing

Published: 2001-05-10

Total Pages: 784

ISBN-13: 9780444508539

DOWNLOAD EBOOK

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.


Sets for Mathematics

Sets for Mathematics

Author: F. William Lawvere

Publisher: Cambridge University Press

Published: 2003-01-27

Total Pages: 280

ISBN-13: 9780521010603

DOWNLOAD EBOOK

In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.


Set Theory, Logic and Their Limitations

Set Theory, Logic and Their Limitations

Author: Moshe Machover

Publisher: Cambridge University Press

Published: 1996-05-23

Total Pages: 304

ISBN-13: 9780521479981

DOWNLOAD EBOOK

This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations. A rigorous axiomatic presentation of Zermelo-Fraenkel set theory is given, demonstrating how the basic concepts of mathematics have apparently been reduced to set theory. This is followed by a presentation of propositional and first-order logic. Concepts and results of recursion theory are explained in intuitive terms, and the author proves and explains the limitative results of Skolem, Tarski, Church and Gödel (the celebrated incompleteness theorems). For students of mathematics or philosophy this book provides an excellent introduction to logic and set theory.


Algebraic Set Theory

Algebraic Set Theory

Author: André Joyal

Publisher: Cambridge University Press

Published: 1995-09-14

Total Pages: 136

ISBN-13: 9780521558303

DOWNLOAD EBOOK

This book offers a new algebraic approach to set theory. The authors introduce a particular kind of algebra, the Zermelo-Fraenkel algebras, which arise from the familiar axioms of Zermelo-Fraenkel set theory. Furthermore, the authors explicitly construct these algebras using the theory of bisimulations. Their approach is completely constructive, and contains both intuitionistic set theory and topos theory. In particular it provides a uniform description of various constructions of the cumulative hierarchy of sets in forcing models, sheaf models and realizability models. Graduate students and researchers in mathematical logic, category theory and computer science should find this book of great interest, and it should be accessible to anyone with a background in categorical logic.


Lectures in Logic and Set Theory: Volume 2, Set Theory

Lectures in Logic and Set Theory: Volume 2, Set Theory

Author: George Tourlakis

Publisher: Cambridge University Press

Published: 2011-07-21

Total Pages: 0

ISBN-13: 9780521168489

DOWNLOAD EBOOK

Volume II, on formal (ZFC) set theory, incorporates a self-contained "chapter 0" on proof techniques so that it is based on formal logic, in the style of Bourbaki. The emphasis on basic techniques provides a solid foundation in set theory and a thorough context for the presentation of advanced topics (such as absoluteness, relative consistency results, two expositions of Godel's construstive universe, numerous ways of viewing recursion and Cohen forcing).