Conjugate Duality in Convex Optimization

Conjugate Duality in Convex Optimization

Author: Radu Ioan Bot

Publisher: Springer Science & Business Media

Published: 2009-12-24

Total Pages: 171

ISBN-13: 3642049001

DOWNLOAD EBOOK

The results presented in this book originate from the last decade research work of the author in the ?eld of duality theory in convex optimization. The reputation of duality in the optimization theory comes mainly from the major role that it plays in formulating necessary and suf?cient optimality conditions and, consequently, in generatingdifferent algorithmic approachesfor solving mathematical programming problems. The investigations made in this work prove the importance of the duality theory beyond these aspects and emphasize its strong connections with different topics in convex analysis, nonlinear analysis, functional analysis and in the theory of monotone operators. The ?rst part of the book brings to the attention of the reader the perturbation approach as a fundamental tool for developing the so-called conjugate duality t- ory. The classical Lagrange and Fenchel duality approaches are particular instances of this general concept. More than that, the generalized interior point regularity conditions stated in the past for the two mentioned situations turn out to be p- ticularizations of the ones given in this general setting. In our investigations, the perturbationapproachrepresentsthestartingpointforderivingnewdualityconcepts for several classes of convex optimization problems. Moreover, via this approach, generalized Moreau–Rockafellar formulae are provided and, in connection with them, a new class of regularity conditions, called closedness-type conditions, for both stable strong duality and strong duality is introduced. By stable strong duality we understand the situation in which strong duality still holds whenever perturbing the objective function of the primal problem with a linear continuous functional.


Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization

Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization

Author: Ernö Robert Csetnek

Publisher: Logos Verlag Berlin GmbH

Published: 2010-06-30

Total Pages: 109

ISBN-13: 3832525033

DOWNLOAD EBOOK

The aim of this work is to present several new results concerning duality in scalar convex optimization, the formulation of sequential optimality conditions and some applications of the duality to the theory of maximal monotone operators. After recalling some properties of the classical generalized interiority notions which exist in the literature, we give some properties of the quasi interior and quasi-relative interior, respectively. By means of these notions we introduce several generalized interior-point regularity conditions which guarantee Fenchel duality. By using an approach due to Magnanti, we derive corresponding regularity conditions expressed via the quasi interior and quasi-relative interior which ensure Lagrange duality. These conditions have the advantage to be applicable in situations when other classical regularity conditions fail. Moreover, we notice that several duality results given in the literature on this topic have either superfluous or contradictory assumptions, the investigations we make offering in this sense an alternative. Necessary and sufficient sequential optimality conditions for a general convex optimization problem are established via perturbation theory. These results are applicable even in the absence of regularity conditions. In particular, we show that several results from the literature dealing with sequential optimality conditions are rediscovered and even improved. The second part of the thesis is devoted to applications of the duality theory to enlargements of maximal monotone operators in Banach spaces. After establishing a necessary and sufficient condition for a bivariate infimal convolution formula, by employing it we equivalently characterize the $\varepsilon$-enlargement of the sum of two maximal monotone operators. We generalize in this way a classical result concerning the formula for the $\varepsilon$-subdifferential of the sum of two proper, convex and lower semicontinuous functions. A characterization of fully en.


Convex Optimization

Convex Optimization

Author: Stephen P. Boyd

Publisher: Cambridge University Press

Published: 2004-03-08

Total Pages: 744

ISBN-13: 9780521833783

DOWNLOAD EBOOK

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.


Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization

Author: Aharon Ben-Tal

Publisher: SIAM

Published: 2001-01-01

Total Pages: 500

ISBN-13: 0898714915

DOWNLOAD EBOOK

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.


Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming

Author: Yurii Nesterov

Publisher: SIAM

Published: 1994-01-01

Total Pages: 414

ISBN-13: 9781611970791

DOWNLOAD EBOOK

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.


Nonlinear Programming

Nonlinear Programming

Author: Anthony V. Fiacco

Publisher: SIAM

Published: 1990-01-01

Total Pages: 224

ISBN-13: 0898712548

DOWNLOAD EBOOK

Analyzes the 'central' or 'dual' trajectory used by modern path following and primal/dual methods for convex / general linear programming.


Analytic Perturbation Theory and Its Applications

Analytic Perturbation Theory and Its Applications

Author: Konstantin E. Avrachenkov

Publisher: SIAM

Published: 2013-12-11

Total Pages: 384

ISBN-13: 1611973139

DOWNLOAD EBOOK

Mathematical models are often used to describe complex phenomena such as climate change dynamics, stock market fluctuations, and the Internet. These models typically depend on estimated values of key parameters that determine system behavior. Hence it is important to know what happens when these values are changed. The study of single-parameter deviations provides a natural starting point for this analysis in many special settings in the sciences, engineering, and economics. The difference between the actual and nominal values of the perturbation parameter is small but unknown, and it is important to understand the asymptotic behavior of the system as the perturbation tends to zero. This is particularly true in applications with an apparent discontinuity in the limiting behavior?the so-called singularly perturbed problems. Analytic Perturbation Theory and Its Applications includes a comprehensive treatment of analytic perturbations of matrices, linear operators, and polynomial systems, particularly the singular perturbation of inverses and generalized inverses. It also offers original applications in Markov chains, Markov decision processes, optimization, and applications to Google PageRank? and the Hamiltonian cycle problem as well as input retrieval in linear control systems and a problem section in every chapter to aid in course preparation.


Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization

Author: Jonathan Borwein

Publisher: Springer Science & Business Media

Published: 2010-05-05

Total Pages: 316

ISBN-13: 0387312560

DOWNLOAD EBOOK

Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.