Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Author: Ivo Nowak

Publisher: Springer Science & Business Media

Published: 2005-08-15

Total Pages: 242

ISBN-13: 9783764372385

DOWNLOAD EBOOK

Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.


Mathematical Programming

Mathematical Programming

Author: T. C. Hu

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 308

ISBN-13: 1483260798

DOWNLOAD EBOOK

Mathematical Programming provides information pertinent to the developments in mathematical programming. This book covers a variety of topics, including integer programming, dynamic programming, game theory, nonlinear programming, and combinatorial equivalence. Organized into nine chapters, this book begins with an overview of optimization of very large-scale planning problems that can be achieved on significant problems. This text then introduces non-stationary policies and determines certain operating characteristics of the optimal policy for a very long planning horizon. Other chapters consider the perfect graph theorem by defining some well-known integer-valued functions of an arbitrary graph. This book discusses as well integer programming that deals with the class of mathematical programming problems in which some or all of the variables are required to be integers. The final chapter deals with the basic theorem of game theory. This book is a valuable resource for readers who are interested in mathematical programming. Mathematicians will also find this book useful.


An Introduction to Domain Decomposition Methods

An Introduction to Domain Decomposition Methods

Author: Victorita Dolean

Publisher: SIAM

Published: 2015-12-08

Total Pages: 242

ISBN-13: 1611974054

DOWNLOAD EBOOK

The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?


Encyclopedia of Optimization

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 4646

ISBN-13: 0387747583

DOWNLOAD EBOOK

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".


Special Report

Special Report

Author: National Research Council (U.S.). Highway Research Board

Publisher:

Published: 1969

Total Pages: 206

ISBN-13:

DOWNLOAD EBOOK


Finite-Dimensional Variational Inequalities and Complementarity Problems

Finite-Dimensional Variational Inequalities and Complementarity Problems

Author: Francisco Facchinei

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 698

ISBN-13: 0387218157

DOWNLOAD EBOOK

This is part two of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It details algorithms for solving finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.


Handbook of Metaheuristics

Handbook of Metaheuristics

Author: Michel Gendreau

Publisher: Springer

Published: 2018-09-20

Total Pages: 611

ISBN-13: 3319910868

DOWNLOAD EBOOK

The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.


Optimization Methods for Logical Inference

Optimization Methods for Logical Inference

Author: Vijay Chandru

Publisher: John Wiley & Sons

Published: 2011-09-26

Total Pages: 386

ISBN-13: 1118031415

DOWNLOAD EBOOK

Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods-propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.


Mathematical Programming and Control Theory

Mathematical Programming and Control Theory

Author: B. D. Craven

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 173

ISBN-13: 9400957963

DOWNLOAD EBOOK

In a mathematical programming problem, an optimum (maxi mum or minimum) of a function is sought, subject to con straints on the values of the variables. In the quarter century since G. B. Dantzig introduced the simplex method for linear programming, many real-world problems have been modelled in mathematical programming terms. Such problems often arise in economic planning - such as scheduling industrial production or transportation - but various other problems, such as the optimal control of an interplanetary rocket, are of similar kind. Often the problems involve nonlinear func tions, and so need methods more general than linear pro gramming. This book presents a unified theory of nonlinear mathe matical programming. The same methods and concepts apply equally to 'nonlinear programming' problems with a finite number of variables, and to 'optimal control' problems with e. g. a continuous curve (i. e. infinitely many variables). The underlying ideas of vector space, convex cone, and separating hyperplane are the same, whether the dimension is finite or infinite; and infinite dimension makes very little difference to the proofs. Duality theory - the various nonlinear generaliz ations of the well-known duality theorem of linear program ming - is found relevant also to optimal control, and the , PREFACE Pontryagin theory for optimal control also illuminates finite dimensional problems. The theory is simplified, and its applicability extended, by using the geometric concept of convex cones, in place of coordinate inequalities.


Nonlinear and Mixed-Integer Optimization

Nonlinear and Mixed-Integer Optimization

Author: Christodoulos A. Floudas

Publisher: Oxford University Press

Published: 1995-10-05

Total Pages: 475

ISBN-13: 0195100565

DOWNLOAD EBOOK

This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.